[1] |
刘佳妮, 徐西伟, 邓云, 等. 肝癌免疫治疗联合放射治疗进展[J].中华介入放射学电子杂志, 2021, 9(2): 204-209.
|
[2] |
Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma[J]. Nature Reviews Disease Primers, 2021, 7(1): 7.
|
[3] |
Melchiorre F, Patella F, Pescatori L, et al. DEB-TACE: a standard review[J]. Future Oncology (London, England), 2018, 14(28): 2969-2984.
|
[4] |
Takayasu K, Arii S, Matsuo N, et al. Comparison of CT findings with resected specimens after chemoembolization with iodized oil for hepatocellular carcinoma[J]. AJR, 2000, 175(3): 699-704.
|
[5] |
Kim SJ, Choi MS, Kang JY, et al. Prediction of complete necrosis of hepatocellular carcinoma treated with transarterial chemoembolization prior to liver transplantation[J]. Gut and Liver, 2009, 3(4): 285-291.
|
[6] |
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J].中国实用外科杂志, 2020, 40(2): 121-138.
|
[7] |
Minami, Kudo M. Therapeutic response assessment of transcatheter arterial chemoembolization for hepatocellular carcinoma: ultrasonography, CT and MR imaging[J]. Oncology, 2013, 84(Suppl 1): 58-63.
|
[8] |
王彬. 明胶海绵微粒经导管动脉化疗栓塞治疗肝细胞癌的疗效及免疫调节作用的研究[J].现代肿瘤医学, 2019, 27(14): 2538-2541.
|
[9] |
寸江平, 姜永能, 宗璇, 等. CalliSpheres微球联合空白微球TACE治疗中晚期肝癌的近期疗效及安全性研究[J]. 介入放射学杂志, 2019, 28(3): 237-241.
|
[10] |
Hu J, Albadawi H, Chong BW, et al. Advances in biomaterials and technologies for vascular embolization[J]. Adv Mater, 2019, 31(33): e1901071.
|
[11] |
张少平. MRI对原发性肝癌介入术的疗效评估[J]. 中国医学影像学杂志, 2019, 27(5): 397-400.
|
[12] |
Mikhail AS, Negussie AH, Mauda-Havakuk M, et al. Drug-eluting embolic microspheres: state-of-the-art and emerging clinical applications[J]. Expert Opin Drug Deliv, 2021, 18(3): 383-398.
|
[13] |
Golfieri R, Glampalma E, Renzulli M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma[J]. Br J Cancer, 2014, 111(2): 255-264.
|
[14] |
De Luis E, Bilbao JI, De Ciércoles JA, et al. In vivo evaluation of a new embolic spherical particle (HepaSphere) in a kidney animal model[J]. Cardiovasc Intervent Radiol, 2008, 31(2): 367-376.
|
[15] |
Zurstrassen CE, Gireli LPO, Tyng CJ, et al. Safety and efficacy of HepaSphere 50-100 μm in the treatment of hepatocellular carcinoma[J]. Minim Invasive Ther Allied Technol, 2017, 26(4): 212-219.
|
[16] |
石钦, 周晨, 刘家成, 等. 载药栓塞材料在肝癌治疗中的应用[J]. 中华介入放射学电子杂志, 2020, 8(4): 364-369.
|
[17] |
Wang CY, Xia JG, Yang ZQ, et al. Transarterial chemoembolization with medium-sized doxorubicin-eluting Callisphere is safe and effective for patients with hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 4434.
|
[18] |
Guiu B, Colombat S, Piron L, et al. Transarterial chemoembolization of hepatocellular carcinoma with idarubicin-loaded tandem drug-eluting embolics[J]. Cancers, 2019, 11(7): 987.
|
[19] |
De Baere T, Guiu B, Ronot M, et al. Real life prospective evaluation of new drug-eluting platform for chemoembolization of patients with hepatocellular carcinoma: PARIS registry[J]. Cancers, 2020, 12(11): 3405.
|
[20] |
Chen YP, Zhang JL, Zou Y, et al. Recent advances on polymeric beads or hydrogels as embolization agents for improved transcatheter arterial chemoembolization (TACE)[J]. Front In Chem, 2019, 7: 408.
|
[21] |
Guiu B, Hincapie G, Thompson L, et al. An in vitro evaluation of four types of drug-eluting embolics loaded with Idarubicin[J].J Vasc Interv Radiol, 2019, 30(8): 1303-1309.
|
[22] |
Raza H, Ranjha NM, Razzaq R, et al. Fabrication and in vitro evaluation of 5-Florouracil loaded chondroitin sulfate-sodium alginate microspheres for colon specific delivery[J]. Acta Pol Pharm, 2016, 73(2): 495-507.
|
[23] |
顾朋, 叶尔麦克·阿哈提, 樊喜文. 原发性肝癌TACE治疗栓塞剂对疗效和预后影响[J]. 中华肿瘤防治杂志, 2018, 25(23): 1658-1663.
|
[24] |
Chen G, Wei R, Huang X, et al. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent[J]. Int J Biol Macromol, 2020, 155: 1450-1459.
|
[25] |
Li X, He G, Su F, et al. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma[J]. Asian J Pharm Sci, 2020, 15(6): 739-751.
|
[26] |
Iezzi R, Pompili M, Rinninella E, et al. TACE with degradable starch microspheres (DSM-TACE) as second-line treatment in HCC patients dismissing or ineligible for sorafenib[J]. Eur Radiol, 2019, 29(3): 1285-1292.
|
[27] |
Minici R, Ammendola M, Manti F, et al. Safety and efficacy of degradable starch microspheres transcatheter arterial chemoembolization (DSM-TACE) in the downstaging of intermediate-stage hepatocellular carcinoma (HCC) in patients with a child-pugh score of 8-9[J]. Front Pharmacol, 2021, 12: 634087.
|
[28] |
Haubold J, Reinboldt MP, Wetter A, et al. DSM-TACE of HCC: evaluation of tumor response in patients ineligible for other systemic or loco-regional therapies[J]. Rofo, 2020, 192(9): 862-869.
|
[29] |
Aliberti C, Carandina R, Sarti D, et al. Transarterial chemoembolization with DC Bead LUMI™ radiopaque beads for primary liver cancer treatment: preliminary experience[J]. Future Oncol, 2017, 13(25): 2243-2252.
|
[30] |
Lewis AL, Caine M, Garcia P, et al. Handling and performance characteristics of a new small caliber radiopaque embolic microsphere[J]. J Biomed Mater Res B, Appl Biomater, 2020, 108(7): 2878-2888.
|
[31] |
Kunliang L, Zhicheng J, Xiaolong H, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization[J]. Int J Bio Macromol, 2020, 142: 866-878.
|
[32] |
Nix HP, Momeni A, Chevrier DM, et al. Doxorubicin-loaded polyphosphate glass microspheres for transarterial chemoembolization[J]. J Biomed Mater Res B, Appl Biomater, 2020, 108(6): 2621-2632.
|
[33] |
Nosrati Z, Li N, Michaud F, et al. Development of a coflowing device for the size-controlled preparation of magnetic-polymeric microspheres as embolization agents in magnetic resonance navigation technology[J]. ACS Biomater Sci Eng, 2018, 4(3): 1092-1102.
|
[34] |
LiangYJ, Yu H, Feng G, et al. High-performance poly (lactic-co-glycolic acid)-magnetic microspheres prepared by rotating membrane emulsification for transcatheter arterial embolization and magnetic ablation in VX(2) liver tumors[J]. ACS Appl Mater Interfaces, 2017, 9(50): 43478-43489.
|
[35] |
牛惠敏, 王志恒, 高石鑫,等. 钇90放射性微球在肝脏恶性肿瘤中的应用及进展[J]. 肝癌电子杂, 2021, 8(4): 36-40.
|
[36] |
Kim HC. Radioembolization for the treatment of hepatocellular carcinoma[J]. Clin Mol Hepatol, 2017, 23(2): 109-114.
|
[37] |
Salem R, Gilbertsen M, Butt Z, et al. Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization[J]. Clin Gastroenterol Hepatol, 2013, 11(10): 1358-1365.e1.
|
[38] |
Weng L, Rostambeigi N, Zantek ND, et al. An in situ forming biodegradable hydrogel-based embolic agent for interventional therapies[J]. Acta Biomater, 2013, 9(9): 8182-8191.
|
[39] |
Lym JS, Nguyen Q, Ahn DaW, et al. Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy[J]. Acta Biomater, 2016, 41: 253-263.
|
[40] |
Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor[J]. J Control Release, 2015, 212: 41-49.
|
[41] |
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J]. Journal of Hepatology, 2018, 69(1): 182-236.
|