切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2023, Vol. 11 ›› Issue (01) : 68 -73. doi: 10.3877/cma.j.issn.2095-5782.2023.01.012

综述

局部消融术联合免疫检查点抑制剂治疗肝癌的研究进展
张玉冰1, 陈彦晖1, 沈新颖2,()   
  1. 1. 518020 广东深圳,暨南大学第二临床医学院
    2. 深圳市人民医院介入放射科
  • 收稿日期:2022-06-01 出版日期:2023-02-25
  • 通信作者: 沈新颖

Advances in the treatment of local ablation combined with immune checkpoint inhibitors for hepatocellular carcinoma

Yubing Zhang1, Yanhui Chen1, Xinying Shen2,()   

  1. 1. The Second Clinical Medical College, Jinan University
    2. Department of Interventional Radiology, Shenzhen People's Hospital, Guangdong Shenzhen 518020, China
  • Received:2022-06-01 Published:2023-02-25
  • Corresponding author: Xinying Shen
引用本文:

张玉冰, 陈彦晖, 沈新颖. 局部消融术联合免疫检查点抑制剂治疗肝癌的研究进展[J]. 中华介入放射学电子杂志, 2023, 11(01): 68-73.

Yubing Zhang, Yanhui Chen, Xinying Shen. Advances in the treatment of local ablation combined with immune checkpoint inhibitors for hepatocellular carcinoma[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2023, 11(01): 68-73.

原发性肝细胞癌为常见恶性肿瘤之一。手术切除及肝移植术是根治性治疗手段,但多数肝癌患者确诊时已失去外科手术机会,不能外科手术的患者常采用局部消融治疗、肝动脉化疗栓塞术等微创治疗。近年来,肝癌的免疫治疗逐渐获得了国内外学者的关注。免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)能减少肝癌微环境的免疫抑制,激活机体抗肿瘤免疫反应,控制并杀伤肿瘤细胞。局部消融术通过破坏肿瘤细胞来诱导机体免疫调节,以增强抗肿瘤免疫反应。因此,探究局部消融与ICIs协同增强抗肿瘤免疫反应的作用具有重要的临床意义。文章对局部消融联合ICIs治疗肝癌的研究现状及进展进行综述,并作出展望。

Hepatocellular carcinoma is one of the most common malignant tumors. Surgical resection and liver transplantation are effective ways to cure liver cancer, but most patients have missed the chance of surgical treatment when diagnosed. Local ablation, hepatic artery chemoembolization and other minimally invasive methods are often used in patients who can’t undergo surgery. In recent years, immunotherapy of HCC has gradually gained the attention of researchers at home and abroad. Immune checkpoint inhibitors (ICIs) can reduce the immunosuppression of HCC microenvironment, activate anti-tumor immune response, control and kill tumor cells. Local ablation induces immune regulation to enhance anti-tumor immune response by destroying tumor cells. Therefore, it is of great clinical significance to explore the synergistic effect of ablation and ICIs on enhancing anti-tumor immune response. This article reviews the research status and progress of ablation combined with ICIs in the treatment of hepatocellular carcinoma and prospects the future.

[1]
McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma[J]. Hepatology, 2021, 73 (Suppl 1): 4-13.
[2]
Akinyemiju TAbera S, Ahmed M, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015[J]. JAMA Oncol, 2017, 3(12): 1683-1691.
[3]
Kole C, Charalampakis N, Tsakatikas S, et al. Immunotherapy for hepatocellular carcinoma: a 2021 update[J]. Cancers (Basel), 2020, 12(10): 2859.
[4]
Timperi E, Barnaba V. Viral hepatitides, inflammation and tumour microenvironment[J]. Adv Exp Med Biol, 2020, 1263: 25-43.
[5]
Xu F, Jin T, Zhu Y, Dai C. Immune checkpoint therapy in liver cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 110.
[6]
Ihling C, Naughton B, Zhang Y, et al. Observational study of PD-L1, TGF-β, and immune cell infiltrates in hepatocellular carcinoma[J]. Front Med (Lausanne), 2019, 6: 15.
[7]
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502.
[8]
Ramagopal UA, Liu W, Garrett-Thomson SC, et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab[J]. Proc Natl Acad Sci U S A, 2017, 114(21): 4223-4232.
[9]
de Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors[J]. Cancer Cell, 2020, 38(3): 326-333.
[10]
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2019, 381(16): 1535-1546.
[11]
McNally A, Hill GR, Sparwasser T, et al. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis[J]. Proc Natl Acad Sci U S A, 2011, 108(18): 7529-7534.
[12]
Plathow C, Lohr F, Divkovic G, et al. Focal gene induction in the liver of rats by a heat-inducible promoter using focused ultrasound hyperthermia: preliminary results[J]. Invest Radiol, 2005, 40(11): 729-735.
[13]
Dromi SA, Walsh MP, Herby S, et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity[J]. Radiology, 2009, 251(1): 58-66.
[14]
Huang KW, Jayant K, Lee PH, et al. Positive immuno-modulation following radiofrequency assisted liver resection in hepatocellular carcinoma[J]. J Clin Med, 2019, 8(3): 385.
[15]
Seki S, Habu Y, Kawamura T, et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses[J]. Immunol Rev, 2000, 174: 35-46.
[16]
Zerbini A, Pilli M, Penna A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses[J]. Cancer Res, 2006, 66(2): 1139-1146.
[17]
Haen SP, Gouttefangeas C, Schmidt D, et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation[J]. Cell Stress Chaperones, 2011, 16(5): 495-504.
[18]
Ma H, Zhang Y, Wang Q, et al. Therapeutic safety and effects of adjuvant autologous retronectin activated killer cell immunotherapy for patients with primary hepatocellular carcinoma after radiofrequency ablation[J]. Cancer Biol Ther, 2010, 9(11): 903-907.
[19]
Zerbini A, Pilli M, Fagnoni F, et al. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation[J]. J Immunother, 2008, 31(3): 271-282.
[20]
Zerbini A, Pilli M, Laccabue D, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response[J]. Gastroenterology, 2010, 138(5): 1931-1942.
[21]
Nakagawa H, Mizukoshi E, Iida N, et al. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency ablation[J]. Cancer Immunol Immunother, 2014, 63(4): 347-356.
[22]
张锋, 杨屹. 射频消融术对原发性肝癌患者甲胎蛋白和Th1、Th2细胞因子的影响[J]. 现代肿瘤医学, 2014, 22(5): 1103-1106.
[23]
侯丽, 宋晓丹. 射频消融术对原发性肝癌患者外周血免疫细胞亚群及细胞因子水平的影响研究[J]. 中国医学装备, 2018, 15(12): 101-105.
[24]
杨闯, 张永川, 李华国, 等. 射频消融对原发性肝癌患者外周血T细胞亚群及NK细胞变化的影响[J]. 中国老年学杂志, 2014, 34(16): 4489-4490.
[25]
Baust JG, Gage AA, Bjerklund Johansen TE, et al. Mechanisms of cryoablation: clinical consequences on malignant tumors[J]. Cryobiology, 2014, 68(1): 1-11.
[26]
Shao Q, O'Flanagan S, Lam T, et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions[J]. Int J Hyperthermia, 2019, 36(1): 130-138.
[27]
Yang X, Guo Y, Guo Z, et al. Cryoablation inhibition of distant untreated tumors (abscopal effect) is immune mediated[J]. Oncotarget, 2018, 10(41): 4180-4191.
[28]
Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses[J]. Cryobiology, 2009, 58(1): 1-11.
[29]
Basu S, Binder RJ, Suto R, et al.Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway[J]. Int Immunol, 2000, 12(11): 1539-1546.
[30]
Bottero V, Withoff S, Verma IM. NF-kappa B and the regulation of hematopoiesis[J]. Cell Death Differ, 2006, 13(5): 785-797.
[31]
Skoberne M, Beignon AS, Bhardwaj N. Danger signals: a time and space continuum[J]. Trends Mol Med, 2004, 10(6): 251-257.
[32]
Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208.
[33]
Zhang YS, Niu LZ, Zhan K, et al. Percutaneous imaging-guided cryoablation for lung cancer[J]. J Thorac Dis, 2016, 8(Suppl 9): 705-709.
[34]
Baust JG, Snyder KK, Santucci KL, et al.Cryoablation: physical and molecular basis with putative immunological consequences[J]. Int J Hyperthermia, 2019, 36(sup1): 10-16.
[35]
Si T, Guo Z, Hao X. Immunologic response to primary cryoablation of high-risk prostate cancer[J]. Cryobiology, 2008, 57(1): 66-71.
[36]
Misao A, Sakata K, Saji S, et al.Late appearance of resistance to tumor rechallenge following cryosurgery: a study in an experimental mammary tumor of the rat[J]. Cryobiology, 1981, 18(4): 386-389.
[37]
Sidana A. Cancer immunotherapy using tumor cryoablation[J]. Immunotherapy, 2014, 6(1): 85-93.
[38]
Takahashi Y, Izumi Y, Matsutani N, et al. Optimized magnitude of cryosurgery facilitating anti-tumor immunoreaction in a mouse model of Lewis lung cancer[J]. Cancer Immunol Immunother, 2016, 65(8): 973-982.
[39]
Osada S, Imai H, Tomita H, et al. Serum cytokine levels in response to hepatic cryoablation[J]. J Surg Oncol, 2007, 95(6): 491-498.
[40]
李前进, 刘兴贵. 肝癌晚期患者氩氦刀治疗手术前后外周血T、NK细胞表达差异相关研究[J]. 贵州医药, 2015, 39(8): 706-707.
[41]
Zhou L, Fu JL, Lu YY, et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus-related hepatocellular carcinoma[J]. J Gastroenterol, 2010, 45(9): 968-978.
[42]
Yang Y, Qin Z, Du D, et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer[J]. Cardiovasc Intervent Radiol, 2019, 42(1): 48-59.
[43]
Sutter O, Calvo J, N'Kontchou G, et al. Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series[J]. Radiology, 2017, 284(3): 877-886.
[44]
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, et al. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity[J]. EBioMedicine, 2019, 44: 112-125.
[45]
Li X, Xu K, Li W, et al. Immunologic response to tumor ablation with irreversible electroporation[J]. PLoS One, 2012, 7(11): e48749.
[46]
Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer[J]. Cancer Res, 2011, 71(4): 1263-1271.
[47]
Guo X, Du F, Liu Q, et al. Immunological effect of irreversible electroporation on hepatocellular carcinoma[J]. BMC Cancer, 2021, 21(1): 443.
[48]
Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 293-313.
[49]
Shi L, Chen L, Wu C, et al. PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor[J]. Clin Cancer Res, 2016, 22(5): 1173-1184.
[50]
Lyu N, Kong Y, Li X, et al. Ablation reboots the response in advanced hepatocellular carcinoma with stable or atypical response during PD-1 therapy: a proof-of-concept study[J]. Front Oncol, 2020, 10: 580241.
[51]
Duffy AG, Ulahannan SV, Makorova-Rusher O, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma[J]. J Hepatol, 2017, 66(3): 545-551.
[52]
Greten TF, Mauda-Havakuk M, Heinrich B, et al.Combined locoregional-immunotherapy for liver cancer[J]. J Hepatol, 2019, 70(5): 999-1007.
[53]
Wang X, Liu G, Chen S, et al. Combination therapy with PD-1 blockade and radiofrequency ablation for recurrent hepatocellular carcinoma: a propensity score matching analysis[J]. Int J Hyperthermia, 2021, 38(1): 1519-1528.
[54]
Li X, Xu J, Gu X, et al. Case report: antiangiogenic therapy plus immune checkpoint inhibitors combined with intratumoral cryoablation for hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 740-790.
[55]
侯思楠, 王卫东, 钟泽龙, 等. 不可逆电穿孔消融术联合PD-1抑制剂治疗小鼠肝癌效果初步研究[J]. 介入放射学杂志, 2019, 28(5): 454-458.
[56]
Macek Jilkova Z, Kurma K, Decaens T. Animal models of hepatocellular carcinoma: the role of immune system and tumor microenvironment[J]. Cancers (Basel), 2019, 11(10): 1487.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[3] 禄韶英. 股动脉假性动脉瘤的微创治疗[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 377-380.
[4] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[5] 董杰, 杨松, 杨浩, 陈翔, 张万里. 乙酰辅酶A羧化酶2基因高甲基化与肝细胞癌临床病理因素和生存期的关系[J]. 中华普通外科学文献(电子版), 2023, 17(06): 433-437.
[6] 王得晨, 杨康, 杨自杰, 归明彬, 屈莲平, 张小凤, 高峰. 结直肠癌微卫星稳定状态和程序性死亡、吲哚胺2,3-双加氧酶关系的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 462-465.
[7] 王兴, 张峰伟. 腹腔镜肝切除联合断面射频消融治疗伴微血管侵犯肝细胞癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 580-583.
[8] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[9] 邱朋, 邓正栋, 王剑明. 肝内胆管结石微创治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 591-596.
[10] 陈润芝, 杨东梅, 徐慧婷. 信迪利单抗联合索凡替尼后线治疗MSS型BRAF突变的转移性结肠癌:个案报道并文献复习[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 431-435.
[11] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[12] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[13] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[14] 杨镠, 秦岚群, 耿茜, 李栋庆, 戚春建, 蒋华. 可溶性免疫检查点对胃癌患者免疫治疗疗效和预后的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 305-311.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要