[1] |
McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma[J]. Hepatology, 2021, 73 (Suppl 1): 4-13.
|
[2] |
Akinyemiju TAbera S, Ahmed M, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015[J]. JAMA Oncol, 2017, 3(12): 1683-1691.
|
[3] |
Kole C, Charalampakis N, Tsakatikas S, et al. Immunotherapy for hepatocellular carcinoma: a 2021 update[J]. Cancers (Basel), 2020, 12(10): 2859.
|
[4] |
Timperi E, Barnaba V. Viral hepatitides, inflammation and tumour microenvironment[J]. Adv Exp Med Biol, 2020, 1263: 25-43.
|
[5] |
Xu F, Jin T, Zhu Y, Dai C. Immune checkpoint therapy in liver cancer[J]. J Exp Clin Cancer Res, 2018, 37(1): 110.
|
[6] |
Ihling C, Naughton B, Zhang Y, et al. Observational study of PD-L1, TGF-β, and immune cell infiltrates in hepatocellular carcinoma[J]. Front Med (Lausanne), 2019, 6: 15.
|
[7] |
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. Lancet, 2017, 389(10088): 2492-2502.
|
[8] |
Ramagopal UA, Liu W, Garrett-Thomson SC, et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab[J]. Proc Natl Acad Sci U S A, 2017, 114(21): 4223-4232.
|
[9] |
de Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors[J]. Cancer Cell, 2020, 38(3): 326-333.
|
[10] |
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2019, 381(16): 1535-1546.
|
[11] |
McNally A, Hill GR, Sparwasser T, et al. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis[J]. Proc Natl Acad Sci U S A, 2011, 108(18): 7529-7534.
|
[12] |
Plathow C, Lohr F, Divkovic G, et al. Focal gene induction in the liver of rats by a heat-inducible promoter using focused ultrasound hyperthermia: preliminary results[J]. Invest Radiol, 2005, 40(11): 729-735.
|
[13] |
Dromi SA, Walsh MP, Herby S, et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity[J]. Radiology, 2009, 251(1): 58-66.
|
[14] |
Huang KW, Jayant K, Lee PH, et al. Positive immuno-modulation following radiofrequency assisted liver resection in hepatocellular carcinoma[J]. J Clin Med, 2019, 8(3): 385.
|
[15] |
Seki S, Habu Y, Kawamura T, et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses[J]. Immunol Rev, 2000, 174: 35-46.
|
[16] |
Zerbini A, Pilli M, Penna A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses[J]. Cancer Res, 2006, 66(2): 1139-1146.
|
[17] |
Haen SP, Gouttefangeas C, Schmidt D, et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation[J]. Cell Stress Chaperones, 2011, 16(5): 495-504.
|
[18] |
Ma H, Zhang Y, Wang Q, et al. Therapeutic safety and effects of adjuvant autologous retronectin activated killer cell immunotherapy for patients with primary hepatocellular carcinoma after radiofrequency ablation[J]. Cancer Biol Ther, 2010, 9(11): 903-907.
|
[19] |
Zerbini A, Pilli M, Fagnoni F, et al. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation[J]. J Immunother, 2008, 31(3): 271-282.
|
[20] |
Zerbini A, Pilli M, Laccabue D, et al. Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response[J]. Gastroenterology, 2010, 138(5): 1931-1942.
|
[21] |
Nakagawa H, Mizukoshi E, Iida N, et al. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency ablation[J]. Cancer Immunol Immunother, 2014, 63(4): 347-356.
|
[22] |
张锋, 杨屹. 射频消融术对原发性肝癌患者甲胎蛋白和Th1、Th2细胞因子的影响[J]. 现代肿瘤医学, 2014, 22(5): 1103-1106.
|
[23] |
侯丽, 宋晓丹. 射频消融术对原发性肝癌患者外周血免疫细胞亚群及细胞因子水平的影响研究[J]. 中国医学装备, 2018, 15(12): 101-105.
|
[24] |
杨闯, 张永川, 李华国, 等. 射频消融对原发性肝癌患者外周血T细胞亚群及NK细胞变化的影响[J]. 中国老年学杂志, 2014, 34(16): 4489-4490.
|
[25] |
Baust JG, Gage AA, Bjerklund Johansen TE, et al. Mechanisms of cryoablation: clinical consequences on malignant tumors[J]. Cryobiology, 2014, 68(1): 1-11.
|
[26] |
Shao Q, O'Flanagan S, Lam T, et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions[J]. Int J Hyperthermia, 2019, 36(1): 130-138.
|
[27] |
Yang X, Guo Y, Guo Z, et al. Cryoablation inhibition of distant untreated tumors (abscopal effect) is immune mediated[J]. Oncotarget, 2018, 10(41): 4180-4191.
|
[28] |
Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses[J]. Cryobiology, 2009, 58(1): 1-11.
|
[29] |
Basu S, Binder RJ, Suto R, et al.Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway[J]. Int Immunol, 2000, 12(11): 1539-1546.
|
[30] |
Bottero V, Withoff S, Verma IM. NF-kappa B and the regulation of hematopoiesis[J]. Cell Death Differ, 2006, 13(5): 785-797.
|
[31] |
Skoberne M, Beignon AS, Bhardwaj N. Danger signals: a time and space continuum[J]. Trends Mol Med, 2004, 10(6): 251-257.
|
[32] |
Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208.
|
[33] |
Zhang YS, Niu LZ, Zhan K, et al. Percutaneous imaging-guided cryoablation for lung cancer[J]. J Thorac Dis, 2016, 8(Suppl 9): 705-709.
|
[34] |
Baust JG, Snyder KK, Santucci KL, et al.Cryoablation: physical and molecular basis with putative immunological consequences[J]. Int J Hyperthermia, 2019, 36(sup1): 10-16.
|
[35] |
Si T, Guo Z, Hao X. Immunologic response to primary cryoablation of high-risk prostate cancer[J]. Cryobiology, 2008, 57(1): 66-71.
|
[36] |
Misao A, Sakata K, Saji S, et al.Late appearance of resistance to tumor rechallenge following cryosurgery: a study in an experimental mammary tumor of the rat[J]. Cryobiology, 1981, 18(4): 386-389.
|
[37] |
Sidana A. Cancer immunotherapy using tumor cryoablation[J]. Immunotherapy, 2014, 6(1): 85-93.
|
[38] |
Takahashi Y, Izumi Y, Matsutani N, et al. Optimized magnitude of cryosurgery facilitating anti-tumor immunoreaction in a mouse model of Lewis lung cancer[J]. Cancer Immunol Immunother, 2016, 65(8): 973-982.
|
[39] |
Osada S, Imai H, Tomita H, et al. Serum cytokine levels in response to hepatic cryoablation[J]. J Surg Oncol, 2007, 95(6): 491-498.
|
[40] |
李前进, 刘兴贵. 肝癌晚期患者氩氦刀治疗手术前后外周血T、NK细胞表达差异相关研究[J]. 贵州医药, 2015, 39(8): 706-707.
|
[41] |
Zhou L, Fu JL, Lu YY, et al. Regulatory T cells are associated with post-cryoablation prognosis in patients with hepatitis B virus-related hepatocellular carcinoma[J]. J Gastroenterol, 2010, 45(9): 968-978.
|
[42] |
Yang Y, Qin Z, Du D, et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer[J]. Cardiovasc Intervent Radiol, 2019, 42(1): 48-59.
|
[43] |
Sutter O, Calvo J, N'Kontchou G, et al. Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: a retrospective single-center case series[J]. Radiology, 2017, 284(3): 877-886.
|
[44] |
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, et al. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity[J]. EBioMedicine, 2019, 44: 112-125.
|
[45] |
Li X, Xu K, Li W, et al. Immunologic response to tumor ablation with irreversible electroporation[J]. PLoS One, 2012, 7(11): e48749.
|
[46] |
Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer[J]. Cancer Res, 2011, 71(4): 1263-1271.
|
[47] |
Guo X, Du F, Liu Q, et al. Immunological effect of irreversible electroporation on hepatocellular carcinoma[J]. BMC Cancer, 2021, 21(1): 443.
|
[48] |
Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(5): 293-313.
|
[49] |
Shi L, Chen L, Wu C, et al. PD-1 blockade boosts radiofrequency ablation-elicited adaptive immune responses against tumor[J]. Clin Cancer Res, 2016, 22(5): 1173-1184.
|
[50] |
Lyu N, Kong Y, Li X, et al. Ablation reboots the response in advanced hepatocellular carcinoma with stable or atypical response during PD-1 therapy: a proof-of-concept study[J]. Front Oncol, 2020, 10: 580241.
|
[51] |
Duffy AG, Ulahannan SV, Makorova-Rusher O, et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma[J]. J Hepatol, 2017, 66(3): 545-551.
|
[52] |
Greten TF, Mauda-Havakuk M, Heinrich B, et al.Combined locoregional-immunotherapy for liver cancer[J]. J Hepatol, 2019, 70(5): 999-1007.
|
[53] |
Wang X, Liu G, Chen S, et al. Combination therapy with PD-1 blockade and radiofrequency ablation for recurrent hepatocellular carcinoma: a propensity score matching analysis[J]. Int J Hyperthermia, 2021, 38(1): 1519-1528.
|
[54] |
Li X, Xu J, Gu X, et al. Case report: antiangiogenic therapy plus immune checkpoint inhibitors combined with intratumoral cryoablation for hepatocellular carcinoma[J]. Front Immunol, 2021, 12: 740-790.
|
[55] |
侯思楠, 王卫东, 钟泽龙, 等. 不可逆电穿孔消融术联合PD-1抑制剂治疗小鼠肝癌效果初步研究[J]. 介入放射学杂志, 2019, 28(5): 454-458.
|
[56] |
Macek Jilkova Z, Kurma K, Decaens T. Animal models of hepatocellular carcinoma: the role of immune system and tumor microenvironment[J]. Cancers (Basel), 2019, 11(10): 1487.
|