切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2022, Vol. 10 ›› Issue (02) : 137 -144. doi: 10.3877/cma.j.issn.2095-5782.2022.02.004

基础研究

肝细胞癌TACE术后肿瘤内T细胞表型与CD73的表达及其与预后的相关性
邹斯彬1, 罗抒阳1, 赵承豪1, 黄明声1,()   
  1. 1. 510630 广东广州,中山大学附属第三医院介入科
  • 收稿日期:2022-03-03 出版日期:2022-05-25
  • 通信作者: 黄明声
  • 基金资助:
    国家自然科学基金(82072035)

Changes of intratumoral T cell phenotype and CD73 expression in hepatocellular carcinoma after trans-arterial chemoembolization and its value in predicting prognosis

Sibin Zou1, Shuyang Luo1, Chenghao Zhao1, Mingsheng Huang1,()   

  1. 1. Department of Interventional Radiology, the Third Affiliated Hospital of Sun Yat-sen University, Guangdong Guangzhou 510630, China.
  • Received:2022-03-03 Published:2022-05-25
  • Corresponding author: Mingsheng Huang
引用本文:

邹斯彬, 罗抒阳, 赵承豪, 黄明声. 肝细胞癌TACE术后肿瘤内T细胞表型与CD73的表达及其与预后的相关性[J]. 中华介入放射学电子杂志, 2022, 10(02): 137-144.

Sibin Zou, Shuyang Luo, Chenghao Zhao, Mingsheng Huang. Changes of intratumoral T cell phenotype and CD73 expression in hepatocellular carcinoma after trans-arterial chemoembolization and its value in predicting prognosis[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2022, 10(02): 137-144.

目的

探讨TACE术后肿瘤微环境的T细胞表型、PD-1(程序性细胞死亡受体)及其配体PD-L1和免疫抑制相关蛋白CD73表达变化及其在预测预后中的价值。

方法

本研究收集了20例2019年5月到2020年12月间经TACE治疗后转化切除的肝癌组织样本(TACE组,简称T+组),同时收集20例同期未接受过TACE治疗的肝癌组织样本作为对照组(无TACE组,简称T-组)。通过对肿瘤组织切片进行多重荧光免疫组化,比较两组患者肿瘤内(FOXP3+)调节性T细胞(Treg)、免疫耗竭的(CD8+/PD-1+)T细胞数量及PD-L1和CD73的表达情况。统计分析不同的T细胞表型及CD73表达水平对患者无进展生存期的影响,并通过Cox多因素回归分析影响患者预后的主要因素。

结果

T+组中的肿瘤组织中的CD73表达水平明显高于T-组(11.86 vs 7.7,P = 0.047)。T+组的Treg、CD8+和CD8+ PD-1+ T细胞数量分别为35.93、86.09、13.91,明显低于T-组的60.02 (P = 0.013) 、120.27(P = 0.043)和28.36(P = 0.015),而PD-L1表达水平在T+与T-中无明显差异(23.68 vs 21.04,P = 0.380)。CD73高表达组显示更少的CD8+ (84.83 vs 121.53,P = 0.029)和CD8+ PD-1+ (15.00 vs 27.27,P = 0.041)T细胞数量,FOXP3+数量两组无差异(45.50 vs 50.45,P = 0.623)。Kaplan-Meier生存分析显示,CD73高表达以及CD8+ PD-1+高表达患者的无进展生存期更差(P值分别为0.009和0.019)。

结论

TACE术后肿瘤免疫微环境CD73表达升高,而FOXP3+和CD8+/PD-1+ T细胞数量降低,而CD73高表达以及CD8+ PD-1+高表达与患者不良预后密切相关,提示靶向CD73可能会成为TACE联合治疗的新方向。

Objective

To study the changes of T cell phenotype, PD-1 (programmed cell death receptor), PD-L1 and immunosuppression-related protein CD73 expression in tumor microenvironment after trans-arterial chemoembolization (TACE) and its value in predicting prognosis.

Methods

Hepatocellular carcinoma tissue samples from 20 patients with TACE (T+ group) and 20 without TACE (T- group) prior to surgery were collected from May 2019 to December 2020. We profiled the number of regulatory (FOXP3+)Treg, immune-exhausted (CD8+/PD-1+) T cells and PD-L1, CD73 expression in the tumor by multiple fluorescence immunohistochemistry on tumor tissue sections. We profiled the effects of different T cell phenotypes and CD73 expression levels on progression-free survival. The main factors affecting the prognosis of patients were analyzed by multivariate Cox regression.

Results

The expression level of CD73 in tumor tissues in the T+ group was higher than that in T- group (11.86 vs 7.7, P = 0.047). The numbers of Treg, CD8+ and CD8+ PD-1+ T cells in the T+ group were 35.93, 86.09, and 13.91, which were lower than that in T- group of 60.02 (P = 0.013), 120.27 (P = 0.043), and 28.36 (P = 0.015) ), while the expression level of PD-L1 was not different between T+ group and T- group (23.68 vs 21.04, P = 0.380). The CD73 high expression group showed lower CD8+ (84.83 vs 121.53, P = 0.029) and CD8+PD-1+ (15.00 vs 27.27, P = 0.041) T cell numbers, and there was no difference in the number of FOXP3+ between the two groups (45.50 vs 50.45, P = 0.623). Kaplan-Meier survival analysis showed that patients with high CD73 expression and high CD8+ PD-1+ expression had worse progression free survival (P = 0.009 and 0.019, respectively).

Conclusions

After TACE, the expression of CD73 in the tumor immune microenvironment increased, while the number of FOXP3+ and CD8+/PD-1+ T cells decreased. The high expression of CD73 and the low expression of CD8+ PD-1+ were related to the poor prognosis of patients, suggesting that targeting CD73 may become a new idea of TACE combination therapy.

表1 两组患者的基线特征
图1 肿瘤组织中T细胞CD8、PD-1的表达情况(**:P < 0.05)1A、1B:典型免疫荧光图片,其中CD8染色为绿色荧光,PD-1为红色荧光,双阳性为叠加颜色橙红色荧光;1C~1E:T-和T+两组患者CD8+细胞数量(86.09 vs 120.27,P = 0.043)、CD8+ PD-1+细胞数量(13.91 vs 28.36,P = 0.015)和CD8+ T细胞PD-1阳性表达率对比;1F:高低CD8+ PD-1+ T细胞数量的两组患者肿瘤直径(87.95 vs 68.50,P = 0.045)对比。
图2 肿瘤组织中T细胞FOXP3的表达情况(*:P < 0.05,**:P < 0.01)2A、2B:典型染色图片,FOXP3染色为绿色荧光;2C:T-和T+两组患者FOXP3+(60.02 vs 35.93,P = 0.013)T细胞数量对比;2D、2E:高低FOXP3+ T细胞数量的两组患者肿瘤直径(89.35 vs 67.10 mm,P = 0.021)和免疫耗竭(CD8+ PD-1+)T细胞(29.27 vs 13.01,P = 0.006)对比。
图3 肿瘤组织中癌细胞CD73和PD-L1的表达情况(*:P < 0.05;ns:P > 0.05)3A、3B:典型染色图片,其中PD-L1染色为绿色荧光,CD73为红色荧光;3C、3D:T-和T+两组患者PD-L1平均荧光强度(21.04 vs 23.68,P = 0.380)和CD73荧光强度(7.7 vs 11.86,P = 0.047)对比。
图4 高低CD73分组后T细胞表型数量情况(*:P < 0.05;ns:P > 0.05)4A~4C:高低CD73表达水平两组患者CD8+细胞数量(84.83 vs 121.53,P = 0.029)、CD8+ PD-1+细胞数量(15.00 vs 27.27,P = 0.041)和FOXP3+细胞数量(45.50 vs 50.45,P = 0.623)对比。
图5 各组Kaplan-Meier曲线5A:高低CD73分组Kaplan-Meier曲线;5B:高低CD8+ PD-1+ T数量分组Kaplan-Meier曲线。
表2 患者Cox生存分析
[1]
Bryce K, Tsochatzis EA. Downstaging for hepatocellular cancer: harm or benefit?[J]. Transl Gastroenterol Hepatol, 2017, 2(12): 106.
[2]
Viveiros P, Riaz A, Lewandowski RJ, et al. Current state of liver-directed therapies and combinatory approaches with systemic therapy in hepatocellular carcinoma (HCC)[J]. Cancers, 2019, 11(8): 1085.
[3]
Wang J, Huang A, Fu P, et al. Effects of TACE combined with microwave ablation on T lymphocyte subsets and prognosis in patients with liver cancer and analysis of safety[J]. J BUON, 2020,25(4): 1883-1889.
[4]
Ren Z, Yue Y, Zhang Y, et al. Changes in the peripheral blood treg cell proportion in hepatocellular carcinoma patients after transarterial chemoembolization with microparticles[J]. Front Immunol, 2021, 12: 624789.
[5]
刘剑飞, 李枫, 王凝芳, 等. 肝动脉灌注化疗栓塞联合射频消融对中晚期肝癌患者生存率,肝功能和T淋巴细胞亚群的影响[J]. 现代生物医学进展, 2021, 21(9): 1669-1672.
[6]
Llovet JM, Baere TD, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2021,18(5): 293-313.
[7]
Vuillefroy de Silly R, Dietrich PY, Walker PR. Hypoxia and antitumor CD8+ T cells: An incompatible alliance?[J]. Oncoimmunology, 2016, 5(12): e1232236.
[8]
Ghalamfarsa G, Kazemi MH, Raoofi Mohseni S, et al. CD73 as a potential opportunity for cancer immunotherapy[J]. Expert Opin Ther Targets, 2019, 23(2): 127-142.
[9]
Briceño P, Rivas-Yañez E, Rosemblatt MV, et al. CD73 ectonucleotidase restrains CD8+ T Cell metabolic fitness and anti-tumoral activity[J]. Front Cell Dev Biol, 2021, 9: 638037.
[10]
Pfister D, Núez NG, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC[J]. Nature, 2021, 592(7854): 450-456.
[11]
Halama N, Michel S, Kloor M, et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy[J]. Cancer Res, 2011, 71(17): 5670-5677.
[12]
Chen XG, Wu C, Zhong J, et al. Tumorigenesis and progression as a consequence of hypoxic TME: a prospective view upon breast cancer therapeutic targets[J]. Exp Cell Res, 2020, 395(2): 112192.
[13]
Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, et al. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer[J]. J Cell Physiol, 2018, 233(3): 2032-2057
[14]
Chen Q, Pu N, Yin H, et al. CD73 acts as a prognostic biomarker and promotes progression and immune escape in pancreatic cancer[J]. J Cell Mol Med, 2020, 24(15): 8674-8686.
[15]
Ma XL, Shen MN, Hu B, et al. CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110β and predicts poor prognosis[J]. J Hematol Oncol, 2019, 12(1): 37.
[16]
Greten TF, Sangro B. Targets for immunotherapy of liver cancer[J]. J Hepatol, 2017, S0168-8278(17)32287-0.
[17]
Antonioli L, Yegutkin GG, Pacher P, et al. Anti-CD73 in cancer immunotherapy: awakening new opportunities[J]. Trends Cancer, 2016, 2(2): 95-109.
[1] 刘明, 徐明, 黄光亮, 周路遥, 林满霞, 吕明德, 谢晓燕. 超声造影定量分析评估原发性肝细胞肝癌患者行经导管肝动脉化疗栓塞术前后血流灌注的改变[J]. 中华医学超声杂志(电子版), 2020, 17(03): 262-267.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 张彬月, 贾红燕. 紫杉醇/白蛋白紫杉醇为基础的化疗联合PD-1/PD-L1抑制剂治疗三阴性乳腺癌的疗效和安全性:荟萃分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 52-58.
[4] 俞祺健, 杨喆, 郑树森. 预防肝癌肝移植术后肿瘤复发的研究现状及进展[J]. 中华移植杂志(电子版), 2023, 17(03): 171-179.
[5] 王瑞涛. 液态活检对肝癌肝移植术后复发预测的研究进展[J]. 中华移植杂志(电子版), 2021, 15(03): 189-192.
[6] 季家祥, 关鸽, 孙延东, 王新, 刘欢, 臧运金, 郭源. 肝细胞肝癌肝移植受者术后生存及肿瘤复发临床分析[J]. 中华移植杂志(电子版), 2020, 14(03): 143-148.
[7] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[8] 陈亚峰, 李江斌, 钟文钧, 董瑞, 臧莉, 阴继凯, 杜锡林, 鲁建国. 腹腔镜微波消融治疗≤3 cm肝细胞肝癌的临床疗效分析[J]. 中华腔镜外科杂志(电子版), 2021, 14(05): 271-276.
[9] 王琰, 赵育洁, 李琼, 郭志坤. CD73在临床疾病中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(01): 58-64.
[10] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[11] 张兰, 李胜棉. 转移性结直肠癌免疫检查点抑制剂治疗研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(11): 805-813.
[12] 吴蓝, 冯建宇. 肝癌TACE术中应用利多卡因的效果观察[J]. 中华介入放射学电子杂志, 2022, 10(03): 333-338.
[13] 李燕, 潘小平, 王海霞, 仝东蒙, 王琛, 朱丽达. 大黄素甲醚调节miR-370诱导肝癌细胞凋亡的实验研究[J]. 中华介入放射学电子杂志, 2018, 06(02): 148-153.
[14] 袁宏军, 刘凤永, 李鑫, 管阳, 王茂强. 3D iGuide穿刺技术在DynaCT引导射频消融治疗大肝癌中的应用[J]. 中华介入放射学电子杂志, 2018, 06(02): 113-117.
[15] 徐坚, 章少丰, 夏开建. 胃癌患者外周血中CD4+PD-1+T细胞表型、功能变化及临床分期相关性研究[J]. 中华临床实验室管理电子杂志, 2022, 10(02): 107-110.
阅读次数
全文


摘要