切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2022, Vol. 10 ›› Issue (02) : 145 -151. doi: 10.3877/cma.j.issn.2095-5782.2022.02.005

基础研究

搭载达沙替尼的巨噬细胞膜囊泡用于缺血性脑卒中的治疗研究
张晓婷1, 张可1, 郭镜培1, 刘佳妮2, 周斌1,()   
  1. 1. 519000 广东珠海,中山大学附属第五医院介入医学中心;519000 广东珠海,中山大学附属第五医院脑血管病中心
    2. 广东省生物医学影像 重点实验室;广东省分子影像技术工程研究中心
  • 收稿日期:2022-04-07 出版日期:2022-05-25
  • 通信作者: 周斌
  • 基金资助:
    国家自然科学基金(82102164); 广东省自然科学基金(2019A1515011223); 珠海市科技计划医疗卫生项目(ZH22036201210058PWC)

Dasatinib-loaded macrophage membrane vesicles for the treatment of ischemic stroke

Xiaoting Zhang1, Ke Zhang1, Jingpei Guo1, Jiani Liu2, Bin Zhou1,()   

  1. 1. Department of Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong Zhuhai 519000, China; Center of Cerebrovascular Disease, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong Zhuhai 519000, China
    2. Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong Zhuhai 519000, China; Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong Zhuhai 519000, China
  • Received:2022-04-07 Published:2022-05-25
  • Corresponding author: Bin Zhou
引用本文:

张晓婷, 张可, 郭镜培, 刘佳妮, 周斌. 搭载达沙替尼的巨噬细胞膜囊泡用于缺血性脑卒中的治疗研究[J]. 中华介入放射学电子杂志, 2022, 10(02): 145-151.

Xiaoting Zhang, Ke Zhang, Jingpei Guo, Jiani Liu, Bin Zhou. Dasatinib-loaded macrophage membrane vesicles for the treatment of ischemic stroke[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2022, 10(02): 145-151.

目的

研究开发靶向缺血性大脑和跨血脑屏障的纳米载体,帮助达沙替尼(DAS)有效地输送到大脑,以减轻缺血性脑卒中(IS)后局部炎症反应和神经损伤。

方法

提取巨噬细胞膜构建搭载DAS的纳米囊泡。经尾静脉给药IS小鼠后,通过各器官组织切片HE染色分析载药囊泡的生物安全性。采用荧光标记载药囊泡,利用活体成像和免疫荧光分析载药囊泡的大脑靶向性和生物分布。对不同治疗处理组做神经功能评分、死亡率统计和神经细胞计数,评估载药囊泡的神经保护作用。

结果

载药囊泡在活体内具有良好的生物安全性,可快速高效靶向缺血侧脑组织内并被神经细胞摄取。对比单纯的DAS治疗,载药囊泡治疗可明显改善IS小鼠的神经功能,降低死亡率,减少神经细胞的凋亡。

结论

研究证实搭载DAS的巨噬细胞膜纳米囊泡可安全高效靶向缺血侧大脑递药,有效发挥抗炎和神经保护作用,可为改善IS后药物治疗提供新思路。

Objective

Aims to develop nanocarrier targeting the ischemic brain and the blood-brain barrier help deliver dasatinib (DAS) effectively to the brain, so as to alleviate local inflammatory response and neuronal damage after ischemic stroke (IS).

Methods

The macrophages membranes were extracted to construct DAS-loaded nanovesicles. The biosafety of DAS-loaded vesicles in IS mice was analyzed by HE staining in tissue sections of each organ. The DAS-loaded vesicles were labeled with fluorescence. Then, the brain targeting characteristic and biological distribution of DAS-loaded vesicles were analyzed by in vivo imaging and immunofluorescence. Neurological function score, mortality statistics and neuron count were performed in different treatment groups to evaluate the neuroprotective effect of DAS-loaded vesicles.

Results

DAS-loaded vesicles had good biosafety in vivo. They could rapidly and efficiently target ischemic brain tissue and be taken up by neuron. Compared with DAS, DAS-loaded vesicles significantly improved the neurological function of IS mice, reduced the mortality rate and neuronal apoptosis.

Conclusions

Our study confirmed that DAS-loaded macrophage membrane nanovesicles can safely and efficiently target the ischemic side of the brain, exert anti-inflammatory and neuroprotective effects. That provide new ideas for improving drug treatment after IS.

图1 利用RAW264.7细胞膜构建纳米载药囊泡1A:TEM观察DAS@CMVs的形态,图片的比例尺为200 μm;1B:NTA分析DAS@CMVs的粒径分布(n = 3)。
图2 尾静脉注射24 h的器官组织切片H&E染色(n = 3)(图片的比例尺为200 μm)
图3 DAS@CMVs在体内的大脑靶向性检测3A:pMCAO小鼠注射DAS@CMVs-Cy5后不同时间点进行IVIS活体荧光成像图片(n = 3);3B:免疫荧光检测发现PKH26标记的DAS@CMVs(红色)与脑组织中NeuN标记的神经细胞(绿色)共定位。图片的比例尺为20 μm,放大图的比例尺为5 μm。
图4 DAS@CMVs治疗可发挥有效的神经保护作用4A:Ludmila Belayev 12点评分;4B:Zea-Longa 5点评分;4C:各组小鼠的死亡率;4D:NeuN+细胞数量的定量分析。每组n = 3,数据以均数±标准差表示。与pMCAO组比较,*P < 0.05,**P < 0.01,***P < 0.001;各组间比较,#P < 0.05,###P < 0.001。
[1]
Li Y, Xu QQ, Shan CS, et al. Combined use of emodin and ginsenoside Rb1 exerts synergistic neuroprotection in cerebral ischemia/reperfusion rats[J]. Front Pharmacol, 2018, 9: 943.
[2]
Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct[J]. N Engl J Med, 2018, 378(1): 11-21.
[3]
Zhang ZG, Chopp M. Promoting brain remodeling to aid in stroke recovery[J]. Trends Mol Med, 2015, 21(9): 543-548.
[4]
Yang J, Zhang X, Chen X, et al. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia[J]. Molecular Therapy-Nucleic Acids, 2017, 7: 278-287.
[5]
Gage MC, Thippeswamy T. Inhibitors of Src family kinases, inducible nitric oxide synthase, and NADPH oxidase as potential CNS drug targets for neurological diseases[J]. CNS Drugs, 2021, 35(1): 1-20.
[6]
Jo M, Lee J, Kim HG, et al. Anti-inflammatory effect of barringtonia angusta methanol extract is mediated by targeting of Src in the NF-kappaB signalling pathway[J]. Pharm Biol, 2021, 59(1): 799-810.
[7]
Yang M, Xu W, Wang Y, et al. CD11b-activated Src signal attenuates neuroinflammatory pain by orchestrating inflammatory and anti-inflammatory cytokines in microglia[J]. Mol Pain, 2018, 14: 1744806918808150.
[8]
Yang H, Wang L, Zang C, et al. Src inhibition attenuates neuroinflammation and protects dopaminergic neurons in parkinson's disease models[J]. Front Neurosci, 2020, 14: 45.
[9]
Zhang Y, Zeng X, Wang H, et al. Dasatinib self-assembled nanoparticles decorated with hyaluronic acid for targeted treatment of tumors to overcome multidrug resistance[J]. Drug Deliv, 2021, 28(1): 670-679.
[10]
Cruz FF, Horta LF, Maia LA, et al. Dasatinib reduces lung inflammation and fibrosis in acute experimental silicosis[J]. PLoS One, 2016, 11(1): e0147005.
[11]
Da SAL, Magalhaes RF, Branco VC, et al. The tyrosine kinase inhibitor dasatinib reduces lung inflammation and remodelling in experimental allergic asthma[J]. Br J Pharmacol, 2016, 173(7): 1236-1247.
[12]
Dhawan G, Combs CK. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer's disease[J]. J Neuroinflammation, 2012, 9: 117.
[13]
Ryu KY, Lee HJ, Woo H, et al. Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling[J]. J Neuroinflammation, 2019, 16(1): 190.
[14]
Liang S, Pong K, Gonzales C, et al. Neuroprotective profile of novel SRC kinase inhibitors in rodent models of cerebral ischemia[J]. J Pharmacol Exp Ther, 2009, 331(3): 827-835.
[15]
Wu H, Peng B, Mohammed FS, et al. Brain targeting, antioxidant polymeric nanoparticles for stroke drug delivery and therapy[J]. Small, 2022: e2107126.
[16]
Li C, Zhao Z, Luo Y, et al. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke[J]. Adv Sci (Weinh), 2021, 8(20): e2101526.
[17]
Ji J, Wang J, Yang J, et al. The intra-nuclear SphK2-S1P axis facilitates M1-to-M2 shift of microglia via suppressing HDAC1-mediated KLF4 deacetylation[J]. Front Immunol, 2019, 10: 1241.
[18]
Fan Z, Xiao K, Lin J, et al. Functionalized DNA enables programming exosomes/vesicles for tumor imaging and therapy[J]. Small, 2019, 15(47): e1903761.
[19]
Liparulo A, Esposito R, Santonocito D, et al. Formulation and characterization of solid lipid nanoparticles loading RF22-c, a potent and selective 5-LO inhibitor, in a monocrotaline-induced model of pulmonary hypertension[J]. Front Pharmacol, 2020, 11: 83.
[20]
Wang Y, Wang Y, Li S, et al. Functionalized nanoparticles with monocyte membranes and rapamycin achieve synergistic chemoimmunotherapy for reperfusion-induced injury in ischemic stroke[J]. J Nanobiotechnology, 2021, 19(1): 331.
[21]
Li Z, Zhang X, Liu C, et al. Macrophage-biomimetic nanoparticles ameliorate ulcerative colitis through reducing inflammatory factors expression[J]. J Innate Immun, 2021: 1-13.
[1] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[2] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[3] 王璐, 樊杨. 子宫内膜癌相关生物标志物研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 511-516.
[4] 闫甲, 刘双池, 王政宇. 胆囊癌肿瘤标志物的研究和应用进展[J]. 中华普通外科学文献(电子版), 2023, 17(05): 391-394.
[5] 徐瑜杰, 赵国栋. 晚期胃癌治疗方法的研究进展和挑战[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 451-455.
[6] 南方护骨联盟前列腺癌骨转移专家组. 前列腺癌骨转移诊疗专家共识(2023版)[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 201-208.
[7] 王昆, 潘迪, 王庆, 江克华, 孙发. 机器人手术治疗膀胱副神经节瘤一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 291-292.
[8] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[9] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[10] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[11] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[12] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[13] 张许平, 刘佳成, 张舸, 杜艳姣, 李韶, 商丹丹, 王浩, 李艳, 段智慧. CYP2C19基因多态性联合血栓弹力图指导大动脉粥样硬化型非致残性缺血性脑血管事件患者抗血小板治疗的效果[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 477-481.
[14] 邓颖, 黄山, 胡慧秀, 孙超. 老年缺血性脑卒中患者危险因素聚集情况分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 344-349.
[15] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
阅读次数
全文


摘要