切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2022, Vol. 10 ›› Issue (02) : 152 -157. doi: 10.3877/cma.j.issn.2095-5782.2022.02.006

基础研究

脑动静脉畸形部分栓塞术后血管组织增殖与凋亡的变化
郭德华1, 贺迎坤1,(), 白卫星1, 何艳艳1, 李天晓1,()   
  1. 1. 450003 河南郑州,郑州大学人民医院脑血管病科,河南省人民医院神经外科;河南省神经介入研发与应用工程研究中心,河南省脑血管介入创新工程技术研究中心
  • 收稿日期:2021-12-03 出版日期:2022-05-25
  • 通信作者: 贺迎坤, 李天晓
  • 基金资助:
    河南省医学科技攻关计划省部共建项目(SB201901068); 河南省科技厅科技攻关项目(192102310369)

Changes in proliferation and apoptosis of vascular tissue after partial embolization of cerebral arteriovenous malformations

Dehua Guo1, Yingkun He1,(), Weixing Bai1, Yanyan He1, Tianxiao Li1,()   

  1. 1. Department of Cerebrovascular Disease, Zhengzhou University People's Hospital; Department of Neurosurgery, Henan Provincial People's Hospital; Henan Provincial Neurointerventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, Henan Zhengzhou 450003, China
  • Received:2021-12-03 Published:2022-05-25
  • Corresponding author: Yingkun He, Tianxiao Li
引用本文:

郭德华, 贺迎坤, 白卫星, 何艳艳, 李天晓. 脑动静脉畸形部分栓塞术后血管组织增殖与凋亡的变化[J/OL]. 中华介入放射学电子杂志, 2022, 10(02): 152-157.

Dehua Guo, Yingkun He, Weixing Bai, Yanyan He, Tianxiao Li. Changes in proliferation and apoptosis of vascular tissue after partial embolization of cerebral arteriovenous malformations[J/OL]. Chinese Journal of Interventional Radiology(Electronic Edition), 2022, 10(02): 152-157.

目的

研究脑动静脉畸形(BAVM)部分栓塞术后不同时间段内血管组织的增殖与凋亡情况。

方法

调取2018年6月—2021年1月我院神经外科切除的脑动静脉畸形(BAVM)标本32例,其中术前栓塞+手术切除标本24例,根据术前栓塞与手术切除的时间间隔分为短期组(间隔时间< 1 d)、中期组(1 d <间隔时间< 28 d)、远期组(间隔时间> 28 d),对照组为单纯外科手术切除BAVM标本8例。采用HE染色观察不同组别BAVM大体病理观差别,免疫组化检测VEGF、eNOS以及Caspase-3确定BAVM血管组织增殖与凋亡活性,免疫荧光检测CD31评估新生血管数量,TUNEL染色检测BAVM血管组织细胞凋亡数量。

结果

中期组BAVM的VEGF、eNOS及Caspase-3表达较其他各组均存在统计学差异(P < 0.05);中期组BAVM新生血管数量、凋亡细胞数量较其他各组差异亦存在统计学意义(P < 0.05)。

结论

术前栓塞可引起BAVM血管组织的增殖与凋亡,这种增殖与凋亡现象与栓塞时间密切相关,在栓塞中期(1~28 d)表现最为明显,因此过长的手术间隔可能会增加患者的出血风险。

Objective

To investigate the proliferation and apoptosis of vascular tissue in different time periods after partial embolization of brain arteriovenous malformation (BAVM).

Methods

A total of 32 BAVM specimens resected at the Department of Neurosurgery, Henan Provincial People's Hospital, from January 2018 to January 2021, including 24 preoperative embolization + surgical resection specimens, which were divided into short-term group (interval < 1 day), medium-term group (1 day < interval < 28 days), long-term group (interval > 28 days) according to the time interval between preoperative embolization and surgical resection.The control group consisted of 8 patients with BAVM specimens that were surgically removed alone. H E staining was used to observe the differences in the gross pathology of BAVM among different groups, immunohistochemical detection of VEGF, eNOS as well as caspase-3 was used to determine the proliferation and apoptotic activity of BAVM vascular tissues, immunofluorescence detection of CD31 was used to assess the number of neovessels, and TUNEL staining was used to detect the number of apoptosis in BAVM vascular tissues.

Results

The expressions of VEGF, eNOS, and Caspase-3 in BAVM was higher in the medium-term group compared with all other groups (P < 0.05); There were also significant differences in the number of neovessels and apoptotic cells of BAVM in the medium-term group compared with the other groups (P < 0.05).

Conclusions

Preoperative embolization can cause proliferation and apoptosis of BAVM vascular tissue, and such proliferation and apoptosis phenomenon was closely related to the embolization time, which was most obvious at the middle stage (1 day-28 days) of embolization.So a long interval between embolization and surgery may increase the risk of bleeding for the patients.

表1 纳入病例的基线资料
图1 HE染色(×100)1A:对照组;1B:短期组;1C:中期组;1D:远期组。
图2 VEGFA、eNOS、Caspase-3免疫组化结果及半定量分析(×200)
图3 CD31免疫荧光(×200)(绿色为CD31,蓝色为细胞核DAPI染色)3A、3B:对照组、短期组,畸形血管周边新生血管鲜见;3C:中期组,红色箭头为BAVM畸形血管,白色箭头指示为新生血管组织;3D:远期组,白色箭头为已有成熟结构的小畸形血管;3E~3H:TUNEL染色(×200);3I、3J:新生血管计数及TUNEL阳性细胞计数结果。
[1]
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组, 中华医学会神经病学分会神经血管介入协作组. 中国蛛网膜下腔出血诊治指南2019[J]. 中华神经科杂志, 2019, 52(12): 1006-1021.
[2]
何艳艳, 白卫星, 李天晓, 等. 经静脉途径治疗脑动静脉畸形的研究进展[J]. 中华介入放射学电子杂志, 2018, 6(2): 175-179.
[3]
Catapano JS, Frisoli FA, Nguyen CL, et al. Intermediate-grade brain arteriovenous malformations and the boundary of operability using the supplemented Spetzler-Martin grading system[J]. J Neurosurg, 2021, 136(1): 125-133.
[4]
Tailor C, Ashby WS, Gorassini DR, et al. Embolized cerebral arteriovenous malformations: a multivariate analysis of 101 excised specimens[J]. J Neurosurg, 2019, 132(4): 1140-1146.
[5]
Buell TJ, Ding D, Starke RM, et al. Embolization-induced angiogenesis in cerebral arteriovenous malformations[J]. J Clin Neurosci, 2014, 21(11): 1866-1871.
[6]
Wang M, Yang D, Hu Z, et al. Extracorporeal cardiac shock waves therapy improves the function of endothelial progenitor cells after hypoxia Injury via activating PI3K/Akt/eNOS signal Pathway[J]. Front Cardiovasc Med, 2021, 8: 747497.
[7]
Engin A. Endothelial dysfunction in obesity[J]. Adv Exp Med Biol, 2017, 960: 345-379.
[8]
Green DJ, Hopman MT, Padilla J, et al. Vascular adaptation to exercise in humans: role of hemodynamic stimuli[J]. Physiol Rev, 2017, 97(2): 495-528.
[9]
Shellikeri S, Bai H, Setser RM, et al. Association of intracranial arteriovenous malformation embolization with more rapid rate of perfusion in the peri-nidal region on color-coded quantitative digital subtraction angiography[J]. J Neurointerv Surg, 2020, 12(9): 902-905.
[10]
Malek AM, Ike L, Seigo I, et al. 702 identification of vascular endothelial growth factor (VEGF) as a flow-regulated mediator of angiogenesis[J]. Neurosurgery, 2000, 47(2): 499-500.
[11]
Russo TA, Stoll D, Nader HB, et al. Mechanical stretch implications for vascular endothelial cells: Altered extracellular matrix synthesis and remodeling in pathological conditions[J]. Life Sci, 2018, 213: 214-225.
[12]
Asadi M, Taghizadeh S, Kaviani E, et al. Caspase-3: structure, function, and biotechnological aspects[J]. Biotechnol Appl Biochem, 2021: 34342377.
[13]
Dolan JM, Meng H, Singh S, et al. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment[J]. Ann Biomed Eng, 2011, 39(6): 1620-1631.
[14]
Jenkins NT, Padilla J, Boyle LJ, et al. Disturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium[J]. Hypertension, 2013, 61(3): 615-621.
[15]
Korshunov VA, Berk BC. Smooth muscle apoptosis and vascular remodeling[J]. Curr Opin Hematol, 2008, 15(3): 250-254.
[16]
Grootaert M, Moulis M, Roth L, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4): 622-634.
[17]
Buell TJ, Ding D, Starke RM, et al. Embolization-induced angiogenesis in cerebral arteriovenous malformations[J]. J Clin Neurosci, 2014, 21(11): 1866-1871.
[18]
Lv X, Wu Z, Li Y, et al. Hemorrhage risk after partial endovascular NBCA and ONYX embolization for brain arteriovenous malformation[J]. Neurol Res, 2012, 34(6): 552-556.
[19]
Del Maestro M, Luzzi S, Gallieni M, et al. Surgical treatment of arteriovenous malformations: role of preoperative staged embolization[J]. Acta Neurochir Suppl, 2018, 129: 109-113.
[20]
Laakso A, Dashti R, Seppänen J, et al. Long-term excess mortality in 623 patients with brain arteriovenous malformations[J]. Neurosurgery, 2008, 63(2): 244-253; discussion 253-255.
[21]
Kato Y, Dong VH, Chaddad F, et al. Expert consensus on the management of brain arteriovenous malformations[J]. Asian J Neurosurg, 2019, 14(4): 1074-1081.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[3] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[4] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[5] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[6] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[7] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[8] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[9] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[10] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[11] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[12] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[13] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[14] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[15] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
阅读次数
全文


摘要