切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2023, Vol. 11 ›› Issue (03) : 268 -274. doi: 10.3877/cma.j.issn.2095-5782.2023.03.013

综述

新型温敏性水凝胶在经导管动脉化疗栓塞中的应用进展
葛校永, 李亚华, 李宗明, 周子鹤, 吴昆鹏, 李一帆, 韩新巍, 任克伟()   
  1. 450052 河南郑州,郑州大学第一附属医院放射介入科;河南省肿瘤微创介入工程技术研究中心
  • 收稿日期:2023-02-08 出版日期:2023-08-25
  • 通信作者: 任克伟
  • 基金资助:
    河南省科技厅中原学者工作站资助项目(234400510027)

Application progress of novel temperature-sensitive hydrogel in transcatheter arterial chemoembolization

Xiaoyong Ge, Yahua Li, Zongming Li, Zihe Zhou, Kunpeng Wu, Yifan Li, Xinwei Han, Kewei Ren()   

  1. Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University; Engineering Technology Research Center for Minimally Invasive Interventional Tumors of Henan Province, Henan Zhengzhou 450052, China
  • Received:2023-02-08 Published:2023-08-25
  • Corresponding author: Kewei Ren
引用本文:

葛校永, 李亚华, 李宗明, 周子鹤, 吴昆鹏, 李一帆, 韩新巍, 任克伟. 新型温敏性水凝胶在经导管动脉化疗栓塞中的应用进展[J/OL]. 中华介入放射学电子杂志, 2023, 11(03): 268-274.

Xiaoyong Ge, Yahua Li, Zongming Li, Zihe Zhou, Kunpeng Wu, Yifan Li, Xinwei Han, Kewei Ren. Application progress of novel temperature-sensitive hydrogel in transcatheter arterial chemoembolization[J/OL]. Chinese Journal of Interventional Radiology(Electronic Edition), 2023, 11(03): 268-274.

经导管动脉化疗栓塞术(transcatheter arterial chemoembolization,TACE)是目前抗肿瘤治疗常用的方法,手术的成功很大程度上依赖于栓塞剂的选择。温敏性水凝胶是一种具有特殊结构、温度刺激下的溶胶-凝胶相变及良好生物相容性的新型液体栓塞剂。文章就温敏性水凝胶的特点及其作为栓塞剂在TACE治疗中的应用进展进行系统总结和论述,并浅析了目前的挑战与前景。

Transcatheter arterial chemoembolization (TACE) is a currently common approach to antitumor therapy, in which procedural success depends heavily on the choice of embolic agent. Temperature-sensitive hydrogel is a novel liquid embolic agent with special structure, temperature-stimulated sol-gel phase transition and excellent biocompatibility. This review systematically summarized and discussed the characteristics of temperature-sensitive hydrogel and its application progress as embolic agent for TACE therapy, and briefly analyzed the existing challenges and prospects.

[1]
Liang L, Li C, Wang MD, et al. Development and validation of a novel online calculator for estimating survival benefit of adjuvant transcatheter arterial chemoembolization in patients undergoing surgery for hepatocellular carcinoma[J]. J Hematol Oncol, 2021, 14(1): 165.
[2]
Kim JH, Yoon HK, Kim SY, et al. Transcatheter arterial chemoembolization vs. chemoinfusion for unresectable hepatocellular carcinoma in patients with major portal vein thrombosis[J]. Aliment Pharmacol Ther, 2009, 29(12): 1291-1298.
[3]
Farinati F, Rinaldi M, Gianni S, et al. Transcatheter arterial chemoembolization in hepatocellular carcinoma[J]. Hepatology, 1998, 28(5): 1441-1443.
[4]
Pouponneau P, Bringout G, Martel S. Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembilization: a design review[J]. Ann Biomed Eng, 2014, 42(5): 929-939.
[5]
陆晨, 查刘生. 智能纳米水凝胶的刺激响应性研究进展[J]. 功能高分子学报, 2012, 25(2): 211-220.
[6]
Overstreet DJ, Lee EJ, Pal A, et al. In situ crosslinking temperature-responsive hydrogels with improved delivery, swelling, and elasticity for endovascular embolization[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(8): 1911-1921.
[7]
Koetting MC, Peters JT, Steichen SD, et al. Stimulus-responsive hydrogels: Theory, modern advances, and applications[J]. Mater Sci Eng R Rep, 2015, 93: 1-49.
[8]
Poupart O, Schmocker A, Coniti R, et al. In vitro implementation of photopolymerizable hydrogels as a potential treatment of intracranial aneurysms[J]. Front Bioeng Biotechnol, 2020, 8: 261.
[9]
Wang W, Wat E, Hui PC, et al. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment[J]. Sci Rep, 2016, 6: 24112.
[10]
Bearat HH, Lee BH, Vernon BL. Comparison of properties between NIPAAm-based simultaneously physically and chemically gelling polymer systems for use in vivo[J]. Acta Biomater, 2012, 8(10): 3629-3642.
[11]
Hacker MC, Klouda L, Ma BB, et al. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers[J]. Biomacromolecules, 2008, 9(6): 1558-1570.
[12]
Moghadam S, Larson RG. Assessing the efficacy of poly(N-isopropylacrylamide) for drug delivery applications using molecular dynamics simulations[J]. Mol Pharm, 2017, 14(2): 478-491.
[13]
Vernon B, Martinez A. Gel strength and solution viscosity of temperature-sensitive, in-situ-gelling polymers for endovascular embolization[J]. J Biomater Sci Polym Ed, 2005, 16(9): 1153-1166.
[14]
Cabane E, Zhang X, Langowska K, et al. Stimuli-responsive polymers and their applications in nanomedicine[J]. Biointerphases, 2012, 7(1-4): 9.
[15]
Dai F, Tang L, Yang J, et al. Fast thermoresponsive BAB-type HEMA/NIPAAm triblock copolymer solutions for embolization of abnormal blood vessels[J]. J Mater Sci Mater Med, 2009, 20(4): 967-974.
[16]
Li X, Chen R, Xu S, et al. Thermoresponsive behavior and rheology of SiO2-hyaluronic acid/poly (N-isopropylacrylamide) (NaHA/PNIPAm) core-shell structured microparticles[J]. J Chem Technol Biotechnol, 2015, 90(3): 407-414.
[17]
Thérien AH, Wang Y, Nothdureft K, et al. Temperature-responsive nanofibrillar hydrogels for cell encapsulation[J]. Biomacromolecules, 2016, 17(10): 3244-3251.
[18]
Wang L, Wu Y, Men Y, et al. Thermal-sensitive Starch-g-PNIPAM prepared by Cu(0) catalyzed SET-LRP at molecular level[J]. RSC Advances, 2015, 5(87): 70758-70765.
[19]
Ashrafizadeh M, Hushmandi K, Mirzaei S, et al. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy[J]. Bioeng Transl Med, 2023, 8(1): e10325.
[20]
Fathi M, Sahandi ZP, Majidi S, et al. Stimuli-responsive chitosan-based nanocarriers for cancer therapy[J]. Bioimpacts, 2017, 7(4): 269-277.
[21]
Tavakoli J, Wang J, Chuah C, et al. Natural-based hydrogels: a journey from simple to smart networks for medical examination[J]. Curr Med Chem, 2020, 27(16): 2704-2733.
[22]
Fang JY, Chen JP, Leu YL, et al. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery[J]. Eur J Pharm Biopharm, 2008, 68(3): 626-636.
[23]
Shin B, Kim J, Vales TP, et al. Thermoresponsive drug controlled release from chitosan-based hydrogel embedded with poly(N-isopropylacrylamide) nanogels[J]. J Polym Sci Part A: Polym Chem, 2018, 56(17): 1907-1914.
[24]
Wang B, Wu X, Li J, et al. Thermosensitive behavior and antibacterial activity of cotton fabric modified with a chitosan-poly(N-isopropylacrylamide) interpenetrating polymer network hydrogel[J]. Polymers, 2016, 8(4): 110.
[25]
Sun G, Feng C, Jiang C, et al. Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control[J]. Int J Biol Macromol, 2017, 105(Pt 1): 566-574.
[26]
Griswold E, Cappello J, Ghandehari H. Silk-elastinlike protein-based hydrogels for drug delivery and embolization[J]. Adv Drug Deliv Rev, 2022, 191: 114579.
[27]
Guo Y, Sun L, Wang Y, et al. Nanomaterials based on thermosensitive polymer in biomedical field[J]. Front Chem, 2022, 10: 946183.
[28]
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 1016-1030.
[29]
Bozoglan BK, Duman O, Tunç S. Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels[J]. Int J Biol Macromol, 2020, 162: 781-797.
[30]
Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration[J]. Biomaterials, 2011, 32(29): 6953-6961.
[31]
Criado M, Rey JM, Mijangos C, et al. Double-membrane thermoresponsive hydrogels from gelatin and chondroitin sulphate with enhanced mechanical properties[J]. RSC Advances, 2016, 6(107): 105821-105826.
[32]
Lee BH, Leon C, Mclemore R, et al. Synthesis and characterization of thermo-sensitive radio-opaque poly(N-isopropylacrylamide-co-PEG-2-iodobenzoate)[J]. J Biomater Sci Polym Ed, 2011, 22(17): 2357-2367.
[33]
Ma Y, Wan J, Qian K, et al. The studies on highly concentrated complex dispersions of gold nanoparticles and temperature-sensitive nanogels and their application as new blood-vessel-embolic materials with high-resolution angiography[J]. J Mater Chem B, 2014, 2(36): 6044-6053.
[34]
Liu Y, Peng X, Qian K, et al. Temperature sensitive p(N-isopropylacrylamide-co-acrylic acid) modified gold nanoparticles for trans-arterial embolization and angiography[J]. J Mater Chem B, 2017, 5(5): 907-916.
[35]
Fatimi A, Zehtabi F, Lerouge S. Optimization and characterization of injectable chitosan-iodixanol-based hydrogels for the embolization of blood vessels[J]. J Biomed Mater Res B Appl Biomater, 2016, 104(8): 1551-1562.
[36]
Shi X, Gao H, Dai F, et al. A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries[J]. Biomater Sci, 2016, 4(11): 1673-1681.
[37]
Xie W, Li H, Yu H, et al. A thermosensitive Pickering gel emulsion with a high oil-water ratio for long-term X-ray imaging and permanent embolization of arteries[J]. Nanoscale, 2023, 15(4): 1835-1848.
[38]
Stastný M, Plocová D, Etrych T, et al. HPMA-hydrogels containing cytostatic drugs. Kinetics of the drug release and in vivo efficacy[J]. J Control Release, 2002, 81(1-2): 101-111.
[39]
Hu Y, Xu M, Liu Y, et al. Chitosan gel incorporated peptide-modified AuNPs for sustained drug delivery with smart pH responsiveness[J]. J Mater Chem B, 2017, 5(6): 1174-1181.
[40]
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy[J]. J Mater Chem B, 2018, 6(29): 4714-4730.
[41]
Oneill HS, herron CC, Hastings CL, et al. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents[J]. Acta biomaterialia, 2017, 48: 110-119.
[42]
Poursaid A, Jensen MM, Huo E, et al. Polymeric materials for embolic and chemoembolic applications[J]. J Control Release, 2016, 240: 414-433.
[43]
Ihuchi T, Hiraki T, Matsui Y, et al. Embolization using hydrogel-coated coils for pulmonary arteriovenous malformations[J]. Diagn Interv Imaging, 2020, 101(3): 129-135.
[44]
谭衍, 边远, 汤树洪, 等. 液体栓塞剂在颅内动脉瘤栓塞中的应用[J]. 广西医科大学学报, 2015, 32(2): 299-301.
[45]
Zhao H, Zheng C, Feng G, et al. Temperature-sensitive poly(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as an embolic agent: distribution, durability of vascular occlusion, and inflammatory reactions in the renal artery of rabbits[J]. AJNR Am J Neuroradiol, 2013, 34(1): 169-176.
[46]
Ganguli S, Lareau R, Jarrett T, et al. A water-based liquid embolic: evaluation of its safety and efficacy in a rabbit kidney model[J].J Vasc Interv Radiol, 2021, 32(6): 813-818.
[47]
Zhang Z, Cen C, Qian K, et al. Assessment of the embolization effect of temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogels in the rabbit renal artery by CT perfusion and confirmed by macroscopic examination[J]. Sci Rep, 2021, 11(1): 4826.
[48]
何阳, 苑天文, 孔鹏, 等. 兔VX2肝癌动物模型构建及载药温敏缓释栓塞剂介入干预的实验性研究[J]. 中国医师杂志, 2019, 21(10): 1540-1542.
[49]
李涵. 温敏纳米凝胶血管栓塞剂在肝癌介入治疗中的应用研究[D]. 华中科技大学, 2021.
[50]
He Y, Yuan T, Wang X, et al. Temperature sensitive hydrogel for preoperative treatment of renal carcinoma[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110798.
[51]
Godet I, Shin YJ, Ju JA, et al. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis[J]. Nat Commun, 2019, 10(1): 4862.
[52]
Li L, Liu Y, Li H, et al. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization[J]. Theranostics, 2018, 8(22): 6291-6306.
[53]
Fan M, Liu Y, Ren Y, et al. Cascade reaction of "Mn2+ -Catechol" triggered by H2O2 to integrate firm tumor vessel embolization and hypoxic response relief[J]. Adv Healthc Mater, 2022, 11(15): e2200544.
[54]
Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor[J]. J Control Release, 2015, 212: 41-49.
[55]
徐杉, 余妍忻, 杨金平, 等. 共载紫杉醇与顺铂的温度敏感性水凝胶对宫颈癌的抗肿瘤作用[J]. 肿瘤, 2016, 36(10): 1130-1138.
[56]
Zhou C, Shi Q, Liu J, et al. Effect of inhibiting tumor angiogenesis after embolization in the treatment of HCC with apatinib-loaded p(N-isopropyl-acrylamide-co-butyl methyl acrylate) temperature-sensitive nanogel[J]. J Hepatocell Carcinoma, 2020, 7: 447-456.
[57]
Wang J, Pang Q, Liu Z, et al. A new liquid agent for endovascular embolization: initial clinical experience[J]. ASAIO J, 2009, 55(5): 494-497.
[58]
曹广, 杨仁杰, 朱旭, 等. 新型温度敏感型栓塞剂用于原发性肝癌动脉栓塞的初步临床试验[J]. 介入放射学杂志, 2015, 24(7): 592-596.
[59]
Choi BM, Hwang CS, Yoon YS, et al. Novel temperature-responsive hydrogel injected to the incision site for postoperative pain relief in laparoscopic abdominal surgery: a single-blind, randomized, pivotal clinical trial[J]. Surg Endosc, 2022, 36(8): 5794-5802.
[60]
Ansley J, Mair EA, Namini H, et al. OTO-201 for the treatment of acute otitis externa: results from a phase 3 randomized clinical study[J]. Ann Otol Rhinol Laryngol, 2019, 128(6): 524-533.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要