[1] |
Liang L, Li C, Wang MD, et al. Development and validation of a novel online calculator for estimating survival benefit of adjuvant transcatheter arterial chemoembolization in patients undergoing surgery for hepatocellular carcinoma[J]. J Hematol Oncol, 2021, 14(1): 165.
|
[2] |
Kim JH, Yoon HK, Kim SY, et al. Transcatheter arterial chemoembolization vs. chemoinfusion for unresectable hepatocellular carcinoma in patients with major portal vein thrombosis[J]. Aliment Pharmacol Ther, 2009, 29(12): 1291-1298.
|
[3] |
Farinati F, Rinaldi M, Gianni S, et al. Transcatheter arterial chemoembolization in hepatocellular carcinoma[J]. Hepatology, 1998, 28(5): 1441-1443.
|
[4] |
Pouponneau P, Bringout G, Martel S. Therapeutic magnetic microcarriers guided by magnetic resonance navigation for enhanced liver chemoembilization: a design review[J]. Ann Biomed Eng, 2014, 42(5): 929-939.
|
[5] |
陆晨, 查刘生. 智能纳米水凝胶的刺激响应性研究进展[J]. 功能高分子学报, 2012, 25(2): 211-220.
|
[6] |
Overstreet DJ, Lee EJ, Pal A, et al. In situ crosslinking temperature-responsive hydrogels with improved delivery, swelling, and elasticity for endovascular embolization[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(8): 1911-1921.
|
[7] |
Koetting MC, Peters JT, Steichen SD, et al. Stimulus-responsive hydrogels: Theory, modern advances, and applications[J]. Mater Sci Eng R Rep, 2015, 93: 1-49.
|
[8] |
Poupart O, Schmocker A, Coniti R, et al. In vitro implementation of photopolymerizable hydrogels as a potential treatment of intracranial aneurysms[J]. Front Bioeng Biotechnol, 2020, 8: 261.
|
[9] |
Wang W, Wat E, Hui PC, et al. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment[J]. Sci Rep, 2016, 6: 24112.
|
[10] |
Bearat HH, Lee BH, Vernon BL. Comparison of properties between NIPAAm-based simultaneously physically and chemically gelling polymer systems for use in vivo[J]. Acta Biomater, 2012, 8(10): 3629-3642.
|
[11] |
Hacker MC, Klouda L, Ma BB, et al. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers[J]. Biomacromolecules, 2008, 9(6): 1558-1570.
|
[12] |
Moghadam S, Larson RG. Assessing the efficacy of poly(N-isopropylacrylamide) for drug delivery applications using molecular dynamics simulations[J]. Mol Pharm, 2017, 14(2): 478-491.
|
[13] |
Vernon B, Martinez A. Gel strength and solution viscosity of temperature-sensitive, in-situ-gelling polymers for endovascular embolization[J]. J Biomater Sci Polym Ed, 2005, 16(9): 1153-1166.
|
[14] |
Cabane E, Zhang X, Langowska K, et al. Stimuli-responsive polymers and their applications in nanomedicine[J]. Biointerphases, 2012, 7(1-4): 9.
|
[15] |
Dai F, Tang L, Yang J, et al. Fast thermoresponsive BAB-type HEMA/NIPAAm triblock copolymer solutions for embolization of abnormal blood vessels[J]. J Mater Sci Mater Med, 2009, 20(4): 967-974.
|
[16] |
Li X, Chen R, Xu S, et al. Thermoresponsive behavior and rheology of SiO2-hyaluronic acid/poly (N-isopropylacrylamide) (NaHA/PNIPAm) core-shell structured microparticles[J]. J Chem Technol Biotechnol, 2015, 90(3): 407-414.
|
[17] |
Thérien AH, Wang Y, Nothdureft K, et al. Temperature-responsive nanofibrillar hydrogels for cell encapsulation[J]. Biomacromolecules, 2016, 17(10): 3244-3251.
|
[18] |
Wang L, Wu Y, Men Y, et al. Thermal-sensitive Starch-g-PNIPAM prepared by Cu(0) catalyzed SET-LRP at molecular level[J]. RSC Advances, 2015, 5(87): 70758-70765.
|
[19] |
Ashrafizadeh M, Hushmandi K, Mirzaei S, et al. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy[J]. Bioeng Transl Med, 2023, 8(1): e10325.
|
[20] |
Fathi M, Sahandi ZP, Majidi S, et al. Stimuli-responsive chitosan-based nanocarriers for cancer therapy[J]. Bioimpacts, 2017, 7(4): 269-277.
|
[21] |
Tavakoli J, Wang J, Chuah C, et al. Natural-based hydrogels: a journey from simple to smart networks for medical examination[J]. Curr Med Chem, 2020, 27(16): 2704-2733.
|
[22] |
Fang JY, Chen JP, Leu YL, et al. Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery[J]. Eur J Pharm Biopharm, 2008, 68(3): 626-636.
|
[23] |
Shin B, Kim J, Vales TP, et al. Thermoresponsive drug controlled release from chitosan-based hydrogel embedded with poly(N-isopropylacrylamide) nanogels[J]. J Polym Sci Part A: Polym Chem, 2018, 56(17): 1907-1914.
|
[24] |
Wang B, Wu X, Li J, et al. Thermosensitive behavior and antibacterial activity of cotton fabric modified with a chitosan-poly(N-isopropylacrylamide) interpenetrating polymer network hydrogel[J]. Polymers, 2016, 8(4): 110.
|
[25] |
Sun G, Feng C, Jiang C, et al. Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control[J]. Int J Biol Macromol, 2017, 105(Pt 1): 566-574.
|
[26] |
Griswold E, Cappello J, Ghandehari H. Silk-elastinlike protein-based hydrogels for drug delivery and embolization[J]. Adv Drug Deliv Rev, 2022, 191: 114579.
|
[27] |
Guo Y, Sun L, Wang Y, et al. Nanomaterials based on thermosensitive polymer in biomedical field[J]. Front Chem, 2022, 10: 946183.
|
[28] |
Le PN, Huynh CK, Tran NQ. Advances in thermosensitive polymer-grafted platforms for biomedical applications[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 1016-1030.
|
[29] |
Bozoglan BK, Duman O, Tunç S. Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels[J]. Int J Biol Macromol, 2020, 162: 781-797.
|
[30] |
Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration[J]. Biomaterials, 2011, 32(29): 6953-6961.
|
[31] |
Criado M, Rey JM, Mijangos C, et al. Double-membrane thermoresponsive hydrogels from gelatin and chondroitin sulphate with enhanced mechanical properties[J]. RSC Advances, 2016, 6(107): 105821-105826.
|
[32] |
Lee BH, Leon C, Mclemore R, et al. Synthesis and characterization of thermo-sensitive radio-opaque poly(N-isopropylacrylamide-co-PEG-2-iodobenzoate)[J]. J Biomater Sci Polym Ed, 2011, 22(17): 2357-2367.
|
[33] |
Ma Y, Wan J, Qian K, et al. The studies on highly concentrated complex dispersions of gold nanoparticles and temperature-sensitive nanogels and their application as new blood-vessel-embolic materials with high-resolution angiography[J]. J Mater Chem B, 2014, 2(36): 6044-6053.
|
[34] |
Liu Y, Peng X, Qian K, et al. Temperature sensitive p(N-isopropylacrylamide-co-acrylic acid) modified gold nanoparticles for trans-arterial embolization and angiography[J]. J Mater Chem B, 2017, 5(5): 907-916.
|
[35] |
Fatimi A, Zehtabi F, Lerouge S. Optimization and characterization of injectable chitosan-iodixanol-based hydrogels for the embolization of blood vessels[J]. J Biomed Mater Res B Appl Biomater, 2016, 104(8): 1551-1562.
|
[36] |
Shi X, Gao H, Dai F, et al. A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries[J]. Biomater Sci, 2016, 4(11): 1673-1681.
|
[37] |
Xie W, Li H, Yu H, et al. A thermosensitive Pickering gel emulsion with a high oil-water ratio for long-term X-ray imaging and permanent embolization of arteries[J]. Nanoscale, 2023, 15(4): 1835-1848.
|
[38] |
Stastný M, Plocová D, Etrych T, et al. HPMA-hydrogels containing cytostatic drugs. Kinetics of the drug release and in vivo efficacy[J]. J Control Release, 2002, 81(1-2): 101-111.
|
[39] |
Hu Y, Xu M, Liu Y, et al. Chitosan gel incorporated peptide-modified AuNPs for sustained drug delivery with smart pH responsiveness[J]. J Mater Chem B, 2017, 5(6): 1174-1181.
|
[40] |
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy[J]. J Mater Chem B, 2018, 6(29): 4714-4730.
|
[41] |
Oneill HS, herron CC, Hastings CL, et al. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents[J]. Acta biomaterialia, 2017, 48: 110-119.
|
[42] |
Poursaid A, Jensen MM, Huo E, et al. Polymeric materials for embolic and chemoembolic applications[J]. J Control Release, 2016, 240: 414-433.
|
[43] |
Ihuchi T, Hiraki T, Matsui Y, et al. Embolization using hydrogel-coated coils for pulmonary arteriovenous malformations[J]. Diagn Interv Imaging, 2020, 101(3): 129-135.
|
[44] |
谭衍, 边远, 汤树洪, 等. 液体栓塞剂在颅内动脉瘤栓塞中的应用[J]. 广西医科大学学报, 2015, 32(2): 299-301.
|
[45] |
Zhao H, Zheng C, Feng G, et al. Temperature-sensitive poly(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as an embolic agent: distribution, durability of vascular occlusion, and inflammatory reactions in the renal artery of rabbits[J]. AJNR Am J Neuroradiol, 2013, 34(1): 169-176.
|
[46] |
Ganguli S, Lareau R, Jarrett T, et al. A water-based liquid embolic: evaluation of its safety and efficacy in a rabbit kidney model[J].J Vasc Interv Radiol, 2021, 32(6): 813-818.
|
[47] |
Zhang Z, Cen C, Qian K, et al. Assessment of the embolization effect of temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogels in the rabbit renal artery by CT perfusion and confirmed by macroscopic examination[J]. Sci Rep, 2021, 11(1): 4826.
|
[48] |
何阳, 苑天文, 孔鹏, 等. 兔VX2肝癌动物模型构建及载药温敏缓释栓塞剂介入干预的实验性研究[J]. 中国医师杂志, 2019, 21(10): 1540-1542.
|
[49] |
李涵. 温敏纳米凝胶血管栓塞剂在肝癌介入治疗中的应用研究[D]. 华中科技大学, 2021.
|
[50] |
He Y, Yuan T, Wang X, et al. Temperature sensitive hydrogel for preoperative treatment of renal carcinoma[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111: 110798.
|
[51] |
Godet I, Shin YJ, Ju JA, et al. Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis[J]. Nat Commun, 2019, 10(1): 4862.
|
[52] |
Li L, Liu Y, Li H, et al. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization[J]. Theranostics, 2018, 8(22): 6291-6306.
|
[53] |
Fan M, Liu Y, Ren Y, et al. Cascade reaction of "Mn2+ -Catechol" triggered by H2O2 to integrate firm tumor vessel embolization and hypoxic response relief[J]. Adv Healthc Mater, 2022, 11(15): e2200544.
|
[54] |
Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor[J]. J Control Release, 2015, 212: 41-49.
|
[55] |
徐杉, 余妍忻, 杨金平, 等. 共载紫杉醇与顺铂的温度敏感性水凝胶对宫颈癌的抗肿瘤作用[J]. 肿瘤, 2016, 36(10): 1130-1138.
|
[56] |
Zhou C, Shi Q, Liu J, et al. Effect of inhibiting tumor angiogenesis after embolization in the treatment of HCC with apatinib-loaded p(N-isopropyl-acrylamide-co-butyl methyl acrylate) temperature-sensitive nanogel[J]. J Hepatocell Carcinoma, 2020, 7: 447-456.
|
[57] |
Wang J, Pang Q, Liu Z, et al. A new liquid agent for endovascular embolization: initial clinical experience[J]. ASAIO J, 2009, 55(5): 494-497.
|
[58] |
曹广, 杨仁杰, 朱旭, 等. 新型温度敏感型栓塞剂用于原发性肝癌动脉栓塞的初步临床试验[J]. 介入放射学杂志, 2015, 24(7): 592-596.
|
[59] |
Choi BM, Hwang CS, Yoon YS, et al. Novel temperature-responsive hydrogel injected to the incision site for postoperative pain relief in laparoscopic abdominal surgery: a single-blind, randomized, pivotal clinical trial[J]. Surg Endosc, 2022, 36(8): 5794-5802.
|
[60] |
Ansley J, Mair EA, Namini H, et al. OTO-201 for the treatment of acute otitis externa: results from a phase 3 randomized clinical study[J]. Ann Otol Rhinol Laryngol, 2019, 128(6): 524-533.
|