[1] |
徐放, 王峰, 刘永晟. 脑动脉闭塞腔内介入治疗的研究进展和应用[J]. 中华介入放射学电子杂志, 2020, 8(4): 370-377.
|
[2] |
Gutierrez J, Turan T N, Hoh BL, et al. Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment[J]. Lancet Neurol, 2022, 21(4): 355-368.
|
[3] |
Song X, Qiu H, Wang S, et al. Hemodynamic and geometric risk factors for in-stent restenosis in patients with intracranial atherosclerotic stenosis[J]. Oxid Med Cell Longev, 2022, 2022: 6951302.
|
[4] |
唐垚, 王子亮, 贺迎坤, 等. 球囊导管在后SAMMPRIS时代治疗颅内动脉粥样硬化性狭窄疾病的研究进展[J]. 中华介入放射学电子杂志, 2020, 8(4): 357-363.
|
[5] |
Gimbrone MJ, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circ Res, 2016, 118(4): 620-636.
|
[6] |
Libby P, Buring JE, Badimon L, et al. Atherosclerosis[J]. Nat Rev Dis Primers, 2019, 5(1): 56.
|
[7] |
Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes[J]. Nat Rev Cardiol, 2020, 17(1): 52-63.
|
[8] |
Jackson ML, Bond AR, George SJ. Mechanobiology of the endothelium in vascular health and disease: in vitro shear stress models[J]. Cardiovasc Drugs Ther, 2023, 37(5): 997-1010.
|
[9] |
Cortini M, Baldini N, Avnet S. New advances in the study of bone tumors: a lesson from the 3D environment[J]. Front Physiol, 2019, 10: 814.
|
[10] |
Teng Z, Wang S, Tokgoz A, et al. Study on the association of wall shear stress and vessel structural stress with atherosclerosis: An experimental animal study[J]. Atherosclerosis, 2021, 320: 38-46.
|
[11] |
Mishchenko EL, Mishchenko AM, Ivanisenko VA. Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis[J]. Vavilovskii Zhurnal Genet Selektsii, 2021, 25(5): 552-561.
|
[12] |
刘鹏, 王广新, 苏国海. 兔动脉粥样硬化模型建立方法的研究进展[J]. 中国比较医学杂志, 2021, 31(4): 150-154.
|
[13] |
Ference BA, Kastelein JJP, Ginsberg HN, et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk[J]. JAMA, 2017, 318(10): 947.
|
[14] |
Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development[J]. Dev Comp Immunol, 2019, 92: 99-104.
|
[15] |
Tang YP, Liu Y, Fan Y J, et al. To develop a novel animal model of myocardial infarction: a research imperative[J]. Animal Model Exp Med, 2018, 1(1): 36-39.
|
[16] |
Su X, Yuan C, Wang L, et al. The beneficial effects of saffron extract on potential oxidative stress in cardiovascular diseases[J]. Oxid Med Cell Longev, 2021, 2021: 6699821.
|
[17] |
Ogita M, Miyauchi K, Onishi A, et al. Development of accelerated coronary atherosclerosis model using low density lipoprotein receptor knock-out swine with balloon injury[J]. PLoS One, 2016, 11(9): e163055.
|
[18] |
姚泓, 赵辉林, 万杰清. 兔颈动脉粥样硬化狭窄模型的建立及天冬酰胺内肽酶的表达[J]. 中国脑血管病杂志, 2016, 13(3): 134-139.
|
[19] |
李永秋, 徐明, 姚绍鑫, 等. 实验性家兔颈动脉球囊扩张动脉狭窄动物模型的建立[J]. 中国动脉硬化杂志, 2003, 11(3):263-266.
|
[20] |
Zhang S, Qi J, Zhang L, et al. Effects of cervical rotation angle on atherosclerotic internal carotid artery blood flow: a safety study using an animal model of internal carotid atherosclerosis[J]. J Manipulative Physiol Ther, 2020, 43(5): 521-530.
|
[21] |
叶炳华, 管耘园, 卢辉和, 等. 不同大小球囊损伤术加高脂饲料建立兔颈动脉粥样硬化模型的比较[J]. 南通大学学报(医学版), 2006, 26(4): 244-246.
|
[22] |
Zhao R, Liu H, Zhang S, et al. A novel animal model for vulnerable atherosclerotic plaque: dehydrated ethanol lavage in the carotid artery of rabbits fed a Western diet[J]. Cardiovasc Diagn Ther, 2021, 11(6): 1241-1252.
|
[23] |
李树荣. 兔颈动脉粥样硬化斑块的MRI研究[D]. 广州: 中山大学, 2008.
|
[24] |
Li T, Zhang R, Liu Y, et al. Fufang-Zhenzhu-Tiaozhi capsule ameliorates rabbit's iliac artery restenosis by regulating adiponectin signaling pathway[J]. Biomed Pharmacother, 2020, 128: 110311.
|
[25] |
Richardson M, Hatton M W, Buchanan MR, et al. Wound healing in the media of the normolipemic rabbit carotid artery injured by air drying or by balloon catheter de-endothelialization[J]. Am J Pathol, 1990, 137(6): 1453-1465.
|
[26] |
徐永革, 周定标, 郑集义, 等. 颈动脉粥样硬化性狭窄动物模型的建立[J]. 中华神经外科杂志, 2003,19(4):14-17.
|
[27] |
王凯. 家兔颈动脉粥样硬化性狭窄模型的建立及NF-<'κ>B、IGF-1的表达[D]. 呼和浩特: 内蒙古医学院, 2008.
|
[28] |
武晓玲. 兔颈动脉粥样硬化流场改变对内中膜病理形态及管壁生物力学特性的影响[D]. 重庆: 第三军医大学, 2006.
|
[29] |
艾志兵, 何国厚, 李承晏, 等. 家兔颈动脉粥样硬化模型的建立[J]. 卒中与神经疾病, 2005, 12(2): 96-99.
|
[30] |
张士德, 高波, 白林刚. 粥样硬化性颈动脉狭窄动物模型的建立及评价[C]. 第八届东北三省放射学学术会议论文集, 2010: 423-428.
|
[31] |
Barrett T J, Schlegel M, Zhou F, et al. Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis[J]. Sci Transl Med, 2019, 11(517):eaax0481.
|
[32] |
Fang S, Zhang Q, Jiang Z. Developing a novel rabbit model of atherosclerotic plaque rupture and thrombosis by cold-induced endothelial injury[J]. J Biomed Sci, 2009, 16(1): 39.
|
[33] |
Mehrad H, Mokhtari-Dizaji M, Ghanaati H, et al. Developing a rabbit model of neointimal stenosis and atherosclerotic fibrous plaque rupture[J]. J Tehran Heart Cent, 2011, 6(3): 117-125.
|
[34] |
李秋梅, 王硕仁, 赵明镜, 等. 家兔新型动脉粥样硬化狭窄模型的建立及其动态观察[J]. 中国实验动物学报, 2004, 12(1): 25-28.
|
[35] |
贾宏宇. 家兔颈动脉粥样硬化狭窄简捷模型建立[D]. 乌鲁木齐: 新疆医科大学, 2007.
|
[36] |
赵若池. 无水乙醇损伤联合高脂饮食建立动脉粥样硬化不稳定斑块的动物模型[D]. 宁波: 宁波大学, 2014.
|
[37] |
张雁斌. CyPA-CD147在兔动脉粥样硬化模型血管重构中的表达研究[D]. 广州: 南方医科大学, 2015.
|
[38] |
Tian J, Hu S, Sun Y, et al. A novel model of atherosclerosis in rabbits using injury to arterial walls induced by ferric chloride as evaluated by optical coherence tomography as well as intravascular ultrasound and histology[J]. J Biomed Biotechnol, 2012, 2012: 121867.
|
[39] |
叶猛. 球囊扩张压力、时间及周期对兔颈动脉再狭窄与外膜滋养血管的影响[D]. 上海: 上海交通大学, 2009.
|
[40] |
李婷. 兔颈动脉狭窄模型的颅外段血管血流和脑组织超微结构变化的研究[D]. 上海: 第二军医大学, 2009.
|
[41] |
王捷, 徐忠信, 李淼, 等. 显微缝合联合高脂饮食建立兔颈动脉粥样硬化模型[J]. 中国实验诊断学, 2011, 15(8): 1236-1239.
|
[42] |
刘恒方, 李新华, 杨期东, 等. 改良硅橡胶圈加高胆固醇喂养诱导颈动脉狭窄兔模型的建立[J]. 中国实用神经疾病杂志, 2007, 10(1): 17-19.
|
[43] |
孙涛, 王颖, 马志勇, 等. 兔颈总动脉不同形式剪切力及动脉粥样硬化模型的构建[J]. 山东大学学报(医学版), 2011, 49(2): 62-66.
|
[44] |
周淑媛. 低切应力对血管内皮屏障功能的调控及SL提取物的干预机制[D]. 北京: 中国中医科学院, 2013.
|
[45] |
Tan W, Wang G, Liu G, et al. The elevation of miR-185-5p alleviates high-fat diet-induced atherosclerosis and lipid accumulation in vivo and in vitro via SREBP2 activation[J]. Aging (Albany NY), 2022, 14(4): 1729-1742.
|
[46] |
Elkind MS, Luna JM, Moon YP, et al. Infectious burden and carotid plaque thickness: the northern Manhattan study[J]. Stroke, 2010, 41(3): e117-e122.
|
[47] |
Petheő GL, Kerekes A, Mihálffy M, et al. Disruption of the NOX5 gene aggravates atherosclerosis in rabbits[J]. Circ Res, 2021, 128(9): 1320-1322.
|
[48] |
Lu R, Yuan T, Wang Y, et al. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7[J]. EBio Medicine, 2018, 36: 29-38.
|
[49] |
Poznyak A, Grechko AV, Poggio P, et al. The diabetes mellitus-atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation[J]. Int J Mol Sci, 2020, 21(5): 1835.
|
[50] |
Childs BG, Baker DJ, Wijshake T, et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis[J]. Science, 2016, 354(6311): 472-477.
|