切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (03) : 250 -255. doi: 10.3877/cma.j.issn.2095-5782.2024.03.010

综述

散发性静脉畸形发病机制分子研究进展
谢世锋1, 林熙1, 吴桂涛1, 刘珍银1,()   
  1. 1. 510623 广东广州,广州医科大学附属妇女儿童医疗中心介入血管瘤科
  • 收稿日期:2023-10-31 出版日期:2024-08-25
  • 通信作者: 刘珍银
  • 基金资助:
    广州医科大学科研提升项目(02-410-2302148XM)

Research progress in molecular pathogenesis of sporadic venous malformations

Shifeng Xie1, Xi Lin1, Guitao Wu1, Zhenyin Liu1,()   

  1. 1. Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Guangzhou 510623, China
  • Received:2023-10-31 Published:2024-08-25
  • Corresponding author: Zhenyin Liu
引用本文:

谢世锋, 林熙, 吴桂涛, 刘珍银. 散发性静脉畸形发病机制分子研究进展[J]. 中华介入放射学电子杂志, 2024, 12(03): 250-255.

Shifeng Xie, Xi Lin, Guitao Wu, Zhenyin Liu. Research progress in molecular pathogenesis of sporadic venous malformations[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(03): 250-255.

静脉畸形(venous malformation,VM)是一种儿童常见的先天性脉管疾病,其中95%的病例表现为散发性。大多数临床症状表现为蓝色、柔软、可被压缩的低流速或中流速血流的血管性病灶。目前,介入硬化术是常见的治疗方法,而手术切除仅在少数病例中被采用。介入硬化术的疗效与病灶内血流速度,以及病灶范围等密切相关。范围较大、弥漫性病灶的治疗次数会增多,且疗效显著的比例低于孤立性小病灶,术后复发率也较高。对于病灶累及周围正常组织严重的病例,强烈的硬化剂注射治疗可能会对受累组织造成极大的损伤。截至目前,静脉畸形的发病机制尚未完全阐明。为了探索更有效的治疗方式,如分子靶向药物治疗,以取得更好的临床疗效,探索静脉畸形的发病机制具有十分重要的意义。文章将就散发性静脉畸形分子研究的进展进行综述。

Venous malformation (VM) is a common congenital vascular disorder in children, with approximately 95% of cases presenting as sporadic. Most cases manifest clinically as vascular lesions with blue, soft, and compressible features, indicative of low to medium blood flow velocity. Currently, interventional sclerotherapy is a common therapeutic approach, while surgical excision is employed in only a minority of cases. The efficacy of interventional sclerotherapy is closely associated with factors such as blood flow velocity within the lesion and the extent of the malformation. In cases with larger and diffuse lesions, treatment frequency is increased, and the proportion of significant improvement is lower compared to isolated small lesions, resulting in a higher postoperative recurrence rate. For cases where the malformation extensively involves surrounding normal tissues, the injection of potent sclerosing agents may cause considerable damage to the affected tissues. As of now, the pathogenesis of venous malformations remains incompletely elucidated. Exploring the etiology of venous malformations is of significant importance to uncover more effective treatment modalities, such as molecular targeted therapy, aiming to achieve improved clinical outcomes. This article provides a comprehensive review of the progress in molecular research on sporadic venous malformations.

[1]
Du Z, Zheng J, Zhang Z, et al. Review of the endothelial pathogenic mechanism of TIE2-related venous malformation[J]. Journal of Vascular Surgery, Venous and Lymphatic Disorders, 2017, 5(5): 740-748.
[2]
中华医学会整形外科分会血管瘤和脉管畸形学组. 血管瘤和脉管畸形的诊断及治疗指南(2019版)[J]. 组织工程与重建外科杂志, 2019, 15(5): 277-317.
[3]
Soblet J, Limaye N, Uebelhoer M, et al. Variable somatic TIE2 mutations in half of sporadic venous malformations[J]. Molecular Syndromology, 2013, 4(4): 179-183.
[4]
Dompmartin A, Ballieux F, Thibon P, et al. Elevated D-dimer level in the differential diagnosis of venous malformations[J]. Archives of Dermatology, 2009, 145(11): 1239-1244.
[5]
Mason KP, Neufeld EJ, Karian VE, et al. Coagulation abnormalities in pediatric and adult patients after sclerotherapy or embolization of vascular anomalies[J]. AJR, 2001, 177(6): 1359-1363.
[6]
Aronniemi J, Långström S, Mattila KA, et al. Venous Malformations and Blood Coagulation in Children[J]. Children, 2021, 8(4): 312.
[7]
Leung YCL, Leung MWY, Yam SD, et al. D-dimer level correlation with treatment response in children with venous malformations[J]. Journal of Pediatric Surgery, 2018, 53(2): 289-292.
[8]
Boon LM, Mulliken JB, Enjolras O, et al. Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities[J]. Archives of Dermatology, 2004, 140(8): 971-976.
[9]
Wouters V, Limaye N, Uebelhoer M, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects[J]. EJHG, 2010, 18(4): 414-420.
[10]
Holleran G, Hall B, O'Regan M, et al. Expression of angiogenic factors in patients with sporadic small bowel angiodysplasia[J]. Journal of Clinical Gastroenterology, 2015, 49(10): 831-836.
[11]
Vikkula M, Boon LM, Carraway KL, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2[J]. Cell, 1996, 87(7): 1181-1190.
[12]
Si Y, Huang J, Li X, et al. AKT/FOXO1 axis links cross-talking of endothelial cell and pericyte in TIE2-mutated venous malformations[J]. CCS, 2020, 18(1): 139.
[13]
郭磊, 宋丹, 王亮. 泡沫硬化剂治疗静脉畸形中国专家共识[J]. 血管与腔内血管外科杂志, 2022, 8(11): 1281-1285+1310.
[14]
王德明, 苏立新, 范新东. 静脉畸形中国专家共识[J]. 介入放射学杂志, 2019, 28(4): 307-311.
[15]
Boscolo E, Limaye N, Huang L, et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects[J]. The Journal of Clinical Investigation, 2015, 125(9): 3491-3504.
[16]
Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations[J]. Nature Genetics, 2009, 41(1): 118-124.
[17]
Queisser A, Boon LM, Vikkula M. Etiology and Genetics of Congenital Vascular Lesions[J]. Otolaryngologic Clinics of North America, 2018, 51(1): 41-53.
[18]
Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche[J]. Cell, 2004, 118(2): 149-161.
[19]
Eklund L, Kangas J, Saharinen P. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems[J]. Clinical Science, 2017, 131(1): 87-103.
[20]
Khan AA, Sandhya VK, Singh P, et al. Signaling network map of endothelial TEK tyrosine kinase[J]. Journal of Signal Transduction, 2014, 2014: 173026.
[21]
Castillo SD, Baselga E, Graupera M. PIK3CA mutations in vascular malformations[J]. Current Opinion in Hematology, 2019, 26(3): 170-178.
[22]
Nätynki M, Kangas J, Miinalainen I, et al. Common and specific effects of TIE2 mutations causing venous malformations[J]. Human Molecular Genetics, 2015, 24(22): 6374-6389.
[23]
Limaye N, Kangas J, Mendola A, et al. Somatic activating PIK3CA mutations cause venous malformation[J]. American Journal of Human Genetics, 2015, 97(6): 914-921.
[24]
Shewchuk LM, Hassell AM, Ellis B, et al. Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail[J]. Structure, 2000, 8(11): 1105-1113.
[25]
Niu XL, Peters KG, Kontos CD. Deletion of the carboxyl terminus of Tie2 enhances kinase activity, signaling, and function. Evidence for an autoinhibitory mechanism[J]. The Journal of Biological Chemistry, 2002, 277(35): 31768-31773.
[26]
施磊, 孙圆圆, 甘露, 等. 西罗莫司对TIE2-L914F突变导致的静脉畸形血管内皮细胞增殖和凋亡的影响及其体外机制探究[J]. 安徽医科大学学报, 2023, 58(4): 561-567.
[27]
郑家伟, 赵泽亮. 血管瘤和脉管畸形的遗传学研究进展[J]. 口腔疾病防治, 2019, 27(12): 749-756.
[28]
Ren J, Hong T, Zhang H. Angioarchitecture and genetic variants of spinal cord cavernous malformations and associated developmental venous anomalies: a case report[J]. Childs Nerv Syst, 2023, 39(7): 1945-1948.
[29]
Sotthibundhu A, McDonagh K, von Kriegsheim A, et al. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells[J]. Stem Cell Research & Therapy, 2016, 7(1): 166.
[30]
Triana P, Lopez-Gutierrez JC. Activity of a TIE2 inhibitor (rebastinib) in a patient with a life-threatening cervicofacial venous malformation[J]. Pediatric Blood & Cancer, 2023, 70(8): e30404.
[31]
Engel ER, Hammill A, Adams D, et al. Response to sirolimus in capillary lymphatic venous malformations and associated syndromes: Impact on symptomatology, quality of life, and radiographic response[J]. Pediatric Blood & Cancer, 2023, 70(4): e30215.
[32]
Zhou C, Clamp A, Backen A, et al. Systematic analysis of circulating soluble angiogenesis-associated proteins in ICON7 identifies Tie2 as a biomarker of vascular progression on bevacizumab[J]. British Journal of Cancer, 2016, 115(2): 228-235.
[33]
Michael IP, Orebrand M, Lima M, et al. Angiopoietin-1 deficiency increases tumor metastasis in mice[J]. BMC Cancer, 2017, 17(1): 539.
[34]
Augustin HG, Koh GY, Thurston G, et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system[J]. Nature Reviews. Molecular Cell Biology, 2009, 10(3): 165-177.
[35]
Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning[J]. Cell, 1996, 87(7): 1161-1169.
[36]
Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis[J]. Science, 1997, 277(5322): 55-60.
[37]
Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies[J]. Blood, 2004, 103(11): 4150-4156.
[38]
Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo[J]. Proc Nat Acad Sci U S A, 2002, 99(17): 11205-11210.
[39]
Vadas O, Burke JE, Zhang X, et al. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases[J]. Science Signaling, 2011, 4(195): re2.
[40]
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling[J]. Nat Rev Mol Cell Biol, 2010, 11(5): 329-341.
[41]
Samuels Y, Waldman T. Oncogenic mutations of PIK3CA in human cancers[J]. Curr Top Microbiol Immunol, 2010, 347: 21-41.
[42]
Petkova M, Kraft M, Stritt S, et al. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation[J]. J Exp Med, 2023, 220(4): e20220741.
[43]
Sheppard SE, Sanders VR, Srinivasan A, et al. Cerebrofacial vascular metameric syndrome is caused by somatic pathogenic variants in PIK3CA[J]. Cold Spring Harb Mol Case Stud, 2021, 7(6): a006147.
[44]
Castel P, Carmona FJ, Grego-Bessa J, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations[J]. Sci Transl Medi, 2016, 8(332): 332ra42.
[45]
di Blasio L, Puliafito A, Gagliardi PA, et al. PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations[J]. Cell Death & Disease, 2018, 9(2): 45.
[46]
Schömel N, Gruber L, Alexopoulos SJ, et al. UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells[J]. Scientific Reports, 2020, 10(1): 8182.
[47]
Chen S, Wang Y, Kong L, et al. Role of UDP-glucose ceramide glucosyltransferase in venous malformation[J]. Front Cell Dev Biol, 2023, 11: 1178045.
[48]
Hartwig P, Höglinger D. The Glucosylceramide Synthase Inhibitor PDMP Causes Lysosomal Lipid Accumulation and mTOR Inactivation[J]. Int J Mol Sci, 2021, 22(13): 7065.
[1] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[2] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[3] 李公豪, 赵艳丽, 彭中兴, 尹德录, 赵云峰. 下调血管生成素样蛋白7表达对血管紧张素Ⅱ介导的血管平滑肌细胞炎症反应的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 93-99.
[4] 单志强, 吉宏明, 贾贵军. 脊髓硬脊膜动静脉瘘诊疗的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 180-185.
[5] 刘权, 张绪新, 李彦钊, 邓东风. 疑似"高血压性基底节区脑出血"的脑动静脉畸形术后再出血一例报道[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 316-317.
[6] 魏云, 李晓东. 脑动静脉畸形合并颅内动脉瘤的手术治疗[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 382-383.
[7] 黎鹏程, 黄谦亦, 云德波, 范润金, 尚彬. 3D打印技术在脑动静脉畸形诊疗中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 121-124.
[8] 赵静, 魏苏, 李庆凤, 李伟. 血清NLRP3、ANGPTL4水平与2型糖尿病下肢动脉病变的关系[J]. 中华临床医师杂志(电子版), 2022, 16(02): 124-130.
[9] 张靖, 王奇. 一例下颌骨动静脉畸形的栓塞治疗[J]. 中华介入放射学电子杂志, 2023, 11(04): 392-392.
[10] 中国血管瘤血管畸形联盟, 中国医师协会介入医师分会妇儿介入学组. 聚桂醇注射液治疗儿童静脉畸形中国专家共识[J]. 中华介入放射学电子杂志, 2022, 10(04): 349-354.
[11] 郭德华, 贺迎坤, 白卫星, 何艳艳, 李天晓. 脑动静脉畸形部分栓塞术后血管组织增殖与凋亡的变化[J]. 中华介入放射学电子杂志, 2022, 10(02): 152-157.
[12] 魏楠, 黄学卿, 王黎洲, 蒋天鹏, 许国辉, 周石. 先天性肺动静脉畸形合并腹部外伤发生迟发性消化道出血一例[J]. 中华介入放射学电子杂志, 2021, 09(04): 461-464.
[13] 徐文婵, 刘珍银, 陈钦谕, 张靖. Tie2突变与儿童静脉畸形相关性研究[J]. 中华介入放射学电子杂志, 2021, 09(04): 415-418.
[14] 何荟, 陈琳, 杨泽萱, 叶楠, 奚级梅. 产前超声应用微血流灌注成像技术诊断胎儿下腔静脉畸形的价值[J]. 中华诊断学电子杂志, 2022, 10(04): 253-258.
[15] 张绍森, 王基源, 张东. 颅内动静脉畸形破裂出血预测中的若干问题[J]. 中华脑血管病杂志(电子版), 2024, 18(03): 197-201.
阅读次数
全文


摘要