切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (03) : 256 -260. doi: 10.3877/cma.j.issn.2095-5782.2024.03.011

综述

锥形束计算机断层扫描在肝癌介入诊疗中的应用进展
倪管崟1, 缪小赟1, 丁家安1, 田鹏程1, 倪才方1,()   
  1. 1. 苏州大学附属第一医院介入科
  • 收稿日期:2024-04-01 出版日期:2024-08-25
  • 通信作者: 倪才方

Progress in the application of CBCT in the interventional diagnosis and treatment of liver cancer

Guanyin Ni1, Xiaoyun Miao1, Jiaan Ding1, Pengcheng Tian1, Caifang Ni1,()   

  1. 1. Department of Vascular and Interventional Radiology, the First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, China
  • Received:2024-04-01 Published:2024-08-25
  • Corresponding author: Caifang Ni
引用本文:

倪管崟, 缪小赟, 丁家安, 田鹏程, 倪才方. 锥形束计算机断层扫描在肝癌介入诊疗中的应用进展[J]. 中华介入放射学电子杂志, 2024, 12(03): 256-260.

Guanyin Ni, Xiaoyun Miao, Jiaan Ding, Pengcheng Tian, Caifang Ni. Progress in the application of CBCT in the interventional diagnosis and treatment of liver cancer[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(03): 256-260.

锥形光束计算机断层扫描(cone-beam computed tomography,CBCT)是一种新颖的医学成像技术,可利用锥形X射线束在围绕患者旋转过程中获得高分辨率、解剖结果详尽的三维图像,突破了传统介入放射学诊疗中使用的二维成像技术。CBCT不但可以检测出CT、磁共振成像未能检测到的不典型小肝癌,在术中寻找肿瘤供血动脉并进行导航,还能在术后即刻通过肝实质灌注来预测临床效果;另外,CBCT引导下的消融与其他影像学相比在准确性、实时性、减少辐射剂量方面也逐渐显示出独特的优势,这些出色的能力,在肝癌精准介入诊疗中的作用愈显重要。文章旨在综述CBCT目前在肝癌介入领域的应用进展和临床价值。

Cone-beam computed tomography (CBCT) represents an innovative medical imaging modality capable of capturing high-resolution, anatomically precise three-dimensional images. This technology utilizes a cone-shaped X-ray beam that rotates around the patient, marking a significant advancement from the conventional two-dimensional imaging techniques employed in traditional interventional radiology. CBCT can not only detect small atypical lesions that cannot be detected by CT and MRI, but also search for tumour blood supply arteries and navigate them intraoperatively, and predict the clinical outcome by parenchymal blood volume (PBV) in the immediate postoperative period; in addition, CBCT-guided ablation has gradually shown unique advantages in accuracy, real-time, and reduction of radiation dose when compared to other imaging, which are excellent abilities that play an important role in the precise interventional diagnosis and treatment of liver cancer. The purpose of this article is to review the current progress and clinical value of CBCT in the field of liver cancer intervention.

[1]
Ning R, Chen B, Yu R, et al. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation[J]. IEEE Trans Med Imaging, 2000, 19(9): 949-963.
[2]
Floridi C, Radaelli A, Abi-Jaoudeh N, et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications[J]. Radiol Med, 2014, 119(7): 521-532.
[3]
Pellerin O, Pereira H, Van Ngoc Ty C, et al. Is dual-phase C-arm CBCT sufficiently accurate for the diagnosis of colorectal cancer liver metastasis during liver intra-arterial treatment?[J]. Eur Radiol, 2019, 29(10): 5253-5263.
[4]
Schernthaner RE, Lin M, Duran R, et al. Delayed-phase cone-beam ct improves detectability of intrahepatic cholangiocarcinoma during conventional transarterial chemoembolization[J]. Cardiovasc Intervent Radiol, 2015, 38(4): 929-936.
[5]
Yu MH, Kim JH, Yoon JH, et al. Role of C-arm CT for transcatheter arterial chemoembolization of hepatocellular carcinoma: diagnostic performance and predictive value for therapeutic response compared with gadoxetic acid-enhanced MRI[J]. Am J Roentgenol, 2013, 201(3): 675-683.
[6]
李桂芬, 孙毅, 赵妍, 等. 锥形束CT增强扫描在结直肠癌肝转移瘤TACE术中的指导作用[J]. 中西医结合肝病杂志, 2022, 32(5): 443-446.
[7]
Miyayama S, Yamashiro M, Ikuno M, et al. Ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinoma guided by automated tumor-feeders detection software: technical success and short-term tumor response[J]. Abdom Imaging, 2014, 39(3): 645-656.
[8]
Pung L, Ahmad M, Mueller K, et al. The role of cone-beam CT in transcatheter arterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis[J]. J Vasc Interv Radiol, 2017, 28(3): 334-341.
[9]
Yao X, Yan D, Jiang X, et al. Dual-phase cone-beam CT-based navigation imaging significantly enhances tumor detectability and aids superselective transarterial chemoembolization of liver cancer[J]. Acad Radiol, 2018, 25(8): 1031-1037.
[10]
Iwazawa J, Ohue S, Hashimoto N, et al. Survival after C-arm CT-assisted chemoembolization of unresectable hepatocellular carcinoma[J]. Eur J Radiol, 2012, 81(12): 3985-3992.
[11]
Ozaki K, Kobayashi S, Matsui O, et al.Extrahepatic arteries originating from hepatic arteries: analysis using CT during hepatic arteriography and visualization on digital subtraction angiography[J]. Cardiovasc Intervent Radiol, 2017, 40(6): 822-830.
[12]
Cho Y, Choi JW, Kwon H, et al. Transarterial chemoembolization for hepatocellular carcinoma: 2023 expert consensus-based practical recommendations of the korean liver cancer association[J]. Korean J Radiol, 2023, 24(7): 606-625.
[13]
Minami Y, Murakami T, Kitano M, et al. Cone-beam CT angiography for hepatocellular carcinoma: current status[J]. Dig Dis, 2015, 33(6): 759-764.
[14]
Choi SY, Kim KA, Choi W, et al. Usefulness of cone-beam CT-based liver perfusion mapping for evaluating the response of hepatocellular carcinoma to conventional transarterial chemoembolization[J]. J Clin Med, 2021, 10(4): 713.
[15]
Chen R, Geschwind JF, Wang Z, et al. Quantitative assessment of lipiodol deposition after chemoembolization: comparison between cone-beam CT and multidetector CT[J]. J Vasc Interv Radiol, 2013, 24(12): 1837-1844.
[16]
Ruff C, Artzner C, Syha R, et al. Transarterial chemoembolization of hepatocellular carcinoma using radiopaque drug-eluting embolics: impact of embolic density and residual tumor perfusion on tumor recurrence and survival[J]. Cardiovasc Intervent Radiol, 2021, 44(9): 1403-1413.
[17]
Fronda M, Mistretta F, Calandri M, et al. The role of immediate post-procedural cone-beam computed tomography (CBCT) in predicting the early radiologic response of hepatocellular carcinoma (HCC) nodules to drug-eluting bead transarterial chemoembolization (DEB-TACE)[J]. J Clin Med, 2022, 11(23): 7089.
[18]
Syha R, Grözinger G, Grosse U, et al. Parenchymal blood volume assessed by C-arm-based computed tomography in immediate posttreatment evaluation of drug-eluting bead transarterial chemoembolization in hepatocellular carcinoma[J]. Invest Radiol, 2016, 51(2): 121-126.
[19]
Louie JD, Kothary N, Kuo WT,et al. Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization[J]. J Vasc Interv Radiol, 2009, 20(5): 606-613.
[20]
Weissinger M, Vogel J, Kupferschläger J, et al. Correlation of C-arm CT acquired parenchymal blood volume (PBV) with 99mTc-macroaggregated albumin (MAA) SPECT/CT for radioembolization work-up[J]. PLoS One, 2020, 15(12): e0244235.
[21]
Levillain H, Bagni O, Deroose CM, et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1570-1584.
[22]
Jafargholi Rangraz E, Tang X, et al. Quantitative comparison of pre-treatment predictive and post-treatment measured dosimetry for selective internal radiation therapy using cone-beam CT for tumor and liver perfusion territory definition[J]. EJNMMI Res, 2020, 10(1): 94.
[23]
Derbel H, Krichen M, Chalaye J, et al. Accuracy and reproducibility of a cone beam CT-based virtual parenchymal perfusion algorithm in the prediction of SPECT/CT anatomical and volumetric results during the planification of radioembolization for HCC[J]. Eur Radiol, 2023, 33(5): 3510-3520.
[24]
O'Connor PJ, Pasik SD, van der Bom IM, et al. Feasibility of Yttrium-90 radioembolization dose calculation utilizing intra-procedural open trajectory cone beam CT[J]. Cardiovasc Intervent Radiol, 2020, 43(2): 295-301.
[25]
Widmann G, Bodner G, Bale R. Tumour ablation: technical aspects[J]. Cancer Imaging, 2009, No A (Special issue A): S63-67.
[26]
Gordon AC, Lewandowski RJ. CBCT-guided TACE-MWA for HCC measuring up to 5 cm[J]. Acad Radiol, 2021, 28 Suppl 1: S71-72.
[27]
Lyu T, Wang J, Cao S, Song L, et al. Radiofrequency ablation guided by cone beam computed tomography for hepatocellular carcinoma: a comparative study of clinical results with the conventional spiral computed tomography-guided procedure[J]. J Int Med Res, 2019, 47(8): 3699-3708.
[28]
Li Z, Xu K, Zhou X, et al. TACE sequential MWA guided by cone-beam computed tomography in the treatment of small hepatocellular carcinoma under the hepatic dome[J]. BMC Cancer, 2023, 23(1): 600.
[29]
Yuan H, Li X, Tian X, et al. Comparison of Angio-CT and cone-beam CT-guided immediate radiofrequency ablation after transcatheter arterial chemoembolization for large hepatocellular carcinoma[J]. Abdom Radiol (NY), 2020, 45(8): 2585-2592.
[30]
Wong SY, Foley S, Cantwell CP, et al. The effects of cone-beam computed tomography imaging guidance on patient radiation exposures in trans-arterial chemoembolisation for hepatocellular carcinoma[J]. Radiat Prot Dosimetry, 2022, 198(8): 441-447.
[31]
姚雪松, 闫东, 曾辉英, 等. 肝细胞癌TACE治疗中C臂CT扫描X线辐射剂量与时间效率的评估[J]. 肝癌电子杂志, 2014, 1(2): 36-39.
[32]
Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles[J]. AJNR Am J Neuroradiol, 2009, 30(6): 1088-1095.
[33]
Lin EY, Jones AK, Chintalapani G, et al. Comparative analysis of intra-arterial cone-beam versus conventional computed tomography during hepatic arteriography for transarterial chemoembolization planning[J]. Cardiovasc Intervent Radiol, 2019, 42(4): 591-600.
[34]
Taiji R, Lin EY, Lin YM, et al. Combined angio-CT systems: a roadmap tool for precision therapy in interventional oncology[J]. Radiol Imaging Cancer, 2021, 3(5): e210039.
[1] 马旦杰, 黄品同, 徐琛, 周芳芳, 潘敏强. 超声造影LI-RADS系统联合甲胎蛋白对有无高危因素背景人群肝细胞癌的诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(03): 288-296.
[2] 赵里汶, 贺需旗, 李凯. 虚拟导航辅助超声引导下经皮射频消融治疗直径≤2 cm肾上腺良性肿瘤的疗效研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1282-1286.
[3] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[4] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[5] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[6] 赵向阳, 刘双池, 张懿刚, 陶滔, 谈燚. 顺铂对肝细胞癌Hep3B细胞程序性死亡配体1表达及药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2024, 18(01): 51-55.
[7] 董杰, 杨松, 杨浩, 陈翔, 张万里. 乙酰辅酶A羧化酶2基因高甲基化与肝细胞癌临床病理因素和生存期的关系[J]. 中华普通外科学文献(电子版), 2023, 17(06): 433-437.
[8] 胡森焱, 徐冬, 方健, 谢冬冬, 王财庆. ICG荧光显影Laennec膜入路腹腔镜解剖性肝切除的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 513-516.
[9] 张琳成, 詹启帆, 赵禹迪, 邵初晓, 凌孙彬, 徐骁. 肝癌肝移植术后免疫抑制方案的网状荟萃分析[J]. 中华移植杂志(电子版), 2023, 17(06): 362-371.
[10] 陈政, 叶庆旺, 赵东波, 石鑫, 吴建强, 余德才. 定位针引导下腹腔镜精准局部肝切除应用探索[J]. 中华腔镜外科杂志(电子版), 2024, 17(02): 125-128.
[11] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[12] 莫鹏, 郭杏春, 梁秀娟, 王耀明. 超声引导与CT引导射频消融治疗肝细胞癌患者疗效及预后比较[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 151-154.
[13] 万菲, 任勇军. 原发性肝细胞癌肿瘤标志物研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 77-81.
[14] 陆知非, 华永飞, 姜哲康, 高过, 江寅, 王高卿. 初始不可切除肝癌转化治疗的影响因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(03): 268-274.
[15] 崔皓然, 顾俊鹏, 任伟新. 基于经导管动脉化疗栓塞联合治疗肝癌伴门静脉癌栓的进展[J]. 中华介入放射学电子杂志, 2024, 12(01): 64-69.
阅读次数
全文


摘要