切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (03) : 244 -249. doi: 10.3877/cma.j.issn.2095-5782.2024.03.009

综述

温敏水凝胶在血管内栓塞治疗中的研究进展
周宝林1, 刘曦1,(), 谌浩1, 王金1, 马雪琴1   
  1. 1. 400010 重庆,重庆医科大学附属第二医院放射科
  • 收稿日期:2024-02-02 出版日期:2024-08-25
  • 通信作者: 刘曦
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0846); 重庆医科大学附属第二医院"宽仁英才"项目(kryc-gg-2104)

Advances of temperature-sensitive hydrogels for endovascular embolization therapy

Baolin Zhou1, Xi Liu1,(), Hao Shen1, Jin Wang1, Xueqin Ma1   

  1. 1. Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2024-02-02 Published:2024-08-25
  • Corresponding author: Xi Liu
引用本文:

周宝林, 刘曦, 谌浩, 王金, 马雪琴. 温敏水凝胶在血管内栓塞治疗中的研究进展[J]. 中华介入放射学电子杂志, 2024, 12(03): 244-249.

Baolin Zhou, Xi Liu, Hao Shen, Jin Wang, Xueqin Ma. Advances of temperature-sensitive hydrogels for endovascular embolization therapy[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(03): 244-249.

血管内栓塞是常见的微创治疗手段,栓塞材料是影响其疗效的重要因素。温敏水凝胶是一类特殊的新型栓塞剂,可随温度变化实现溶胶-凝胶转换,在多个疾病领域展现了良好的应用潜力。文章就各类新型温敏水凝胶的特点及现有的相关研究进展做一综述。

Endovascular embolization is a common minimally invasive treatment, and the embolization material is an important factor affecting its efficacy. Temperature-sensitive hydrogels are a special class of new embolic agents that can realize sol-gel conversion with temperature change, and have shown good potential for application in several disease areas. In this paper, we review the characteristics of various new types of temperature-sensitive hydrogels and the existing research progress.

[1]
Brassel F, Meila D. Evolution of embolic agents in interventional neuroradiology[J]. Clinical Neuroradiology, 2015, 25(Suppl 2): 333-339.
[2]
Turjman F, Massoud TF, Vinters HV, et al. Collagen microbeads: experimental evaluation of an embolic agent in the rete mirabile of the swine[J]. American Journal of Neuroradiology, 1995, 16(5): 1031-1036.
[3]
Lord J, Britton H, Spain S G, et al. Advancements in the development on new liquid embolic agents for use in therapeutic embolisation[J]. Journal of Materials Chemistry B, 2020, 8(36): 8207-8218.
[4]
张碧君, 邹祖豪, 聂小琴, 等. 壳聚糖温敏水凝胶研究进展[J]. 山东化工, 2020, 49(10): 49-51.
[5]
范冉冉, 刘原兵, 张婷, 等. 基于临床需求的温敏凝胶在不同给药部位的应用研究进展[J]. 药学学报, 2022, 57(5): 1235-1244.
[6]
Divya K, Jisha MS. Chitosan nanoparticles preparation and applications[J]. Environmental Chemistry Letters, 2018, 16: 101-112.
[7]
Fatimi A, Zehtabi F, Lerouge S. Optimization and characterization of injectable chitosan-iodixanol-based hydrogels for the embolization of blood vessels[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(8): 1551-1562.
[8]
Wang Y, Xu N, Luo Q, et al. In vivo assessment of chitosan/β-glycerophosphate as a new liquid embolic agent[J]. Interventional Neuroradiology, 2011, 17(1): 87-92.
[9]
Fatimi A, Chabrot P, Berrahmoune S, et al. A new injectable radiopaque chitosan-based sclerosing embolizing hydrogel for endovascular therapies[J]. Acta Biomaterialia, 2012, 8(7): 2712-2721.
[10]
Ning X, Zhao C, Pang J, et al. Experimental study of temperature-sensitive chitosan/β-glycerophosphate embolic material in embolizing the basicranial rete mirabile in swines[J]. Experimental and Therapeutic Medicine, 2015, 10(1): 316-322.
[11]
Zehtabi F, Ispas-Szabo P, Djerir D, et al. Chitosan-doxycycline hydrogel: an MMP inhibitor/sclerosing embolizing agent as a new approach to endoleak prevention and treatment after endovascular aneurysm repair[J]. Acta Biomaterialia, 2017, 64: 94-105.
[12]
Salis A, Rassu G, Budai-Szűcs M, et al. Development of thermosensitive chitosan/glicerophospate injectable in situ gelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study[J]. Expert Opinion on Drug Delivery, 2015, 12(10): 1583-1596.
[13]
Kapoor S, Kundu SC. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31: 17-32.
[14]
Hatlevik Ø, Jensen M, Steinhauff D, et al. Translational development of a silk-elastinlike protein polymer embolic for transcatheter arterial embolization[J]. Macromolecular Bioscience, 2022, 22(2): 2100401.
[15]
Jensen MM, Hatlevik Ø, Steinhauff DD, et al. Protein-based polymer liquid embolics for cerebral aneurysms[J]. Acta Biomaterialia, 2022, 151: 174-182.
[16]
Poursaid A, Price R, Tiede A, et al. In situ gelling silk-elastinlike protein polymer for transarterial chemoembolization[J]. Biomaterials, 2015, 57: 142-152.
[17]
Poursaid A, Jensen MM, Nourbakhsh I, et al. Silk-elastinlike protein polymer liquid chemoembolic for localized release of doxorubicin and sorafenib[J]. Molecular Pharmaceutics, 2016, 13(8): 2736-2748.
[18]
Patel HR, Patel RP, Patel MM. Poloxamers: a pharmaceutical excipients with therapeutic behaviors[J]. International Journal of PharmTech Research, 2009, 1(2): 299-303.
[19]
Raymond J, Metcalfe A, Salazkin I, et al. Temporary vascular occlusion with poloxamer 407[J]. Biomaterials, 2004, 25(18): 3983-3989.
[20]
Gucu A, Cavusoglu I, Eris C, et al. Effects of temporary vascular occluder poloxamer 407 Gel on the endothelium[J]. Journal of Cardiothoracic Surgery, 2013, 8: 16.
[21]
Ohta S, Nitta N, Takahashi M, et al. Pluronic F127: application in arterial embolization[J]. Journal of Vascular and Interventional Radiology, 2006, 17(3): 533-539.
[22]
He Y, Yuan T, Wang X, et al. Temperature sensitive hydrogel for preoperative treatment of renal carcinoma[J]. Materials Science and Engineering: C, 2020, 111: 110798.
[23]
Wang Q, He Y, Shen M, et al. Precision Embolism: biocompatible temperature‐sensitive hydrogels as novel embolic materials for both mainstream and peripheral vessels[J]. Advanced Functional Materials, 2021, 31(20): 2011170.
[24]
Huang L, Shen M, Li R, et al. Thermo-sensitive composite hydrogels based on poloxamer 407 and alginate and their therapeutic effect in embolization in rabbit VX2 liver tumors[J]. Oncotarget, 2016, 7(45): 73280-73291.
[25]
Matsumaru Y, Hyodo A, Nose T, et al. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery[J]. Journal of Biomaterials Science, Polymer Edition, 1996, 7(9): 795-804.
[26]
Vernon B, Martinez A. Gel strength and solution viscosity of temperature-sensitive, in-situ-gelling polymers for endovascular embolization[J]. Journal of Biomaterials Science, Polymer Edition, 2005, 16(9): 1153-1166.
[27]
Li X, Liu W, Ye G, et al. Thermosensitive N-isopropylacrylamide–N–propylacrylamide-vinyl pyrrolidone terpolymers: synthesis, characterization and preliminary application as embolic agents[J]. Biomaterials, 2005, 26(34): 7002-7011.
[28]
Dai F, Tang L, Yang J, et al. Fast thermoresponsive BAB-type HEMA/NIPAAm triblock copolymer solutions for embolization of abnormal blood vessels[J]. Journal of Materials Science: Materials in Medicine, 2009, 20: 967-974.
[29]
Zhao Y, Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors[J]. Advanced Functional Materials, 2011, 21(11): 2035-2042.
[30]
Zhao H, Zheng C, Feng G, et al. Temperature-sensitive poly (N-isopropylacrylamide-co-butyl methylacrylate) nanogel as an embolic agent: distribution, durability of vascular occlusion, and inflammatory reactions in the renal artery of rabbits[J]. American Journal of Neuroradiology, 2013, 34(1): 169-176.
[31]
Li L, Liu Y, Li H, et al. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization[J]. Theranostics, 2018, 8(22): 6291.
[32]
Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor[J]. Journal of Controlled Release, 2015, 212: 41-49.
[33]
Liu Y, Peng X, Qian K, et al. Temperature sensitive p (N-isopropylacrylamide-co-acrylic acid) modified gold nanoparticles for trans-arterial embolization and angiography[J]. Journal of Materials Chemistry B, 2017, 5(5): 907-916.
[34]
Liu Y, Shi D, Ren Y, et al. The immune-chemo-embolization effect of temperature sensitive gold nanomedicines against liver cancer[J]. Nano Research, 2023, 16(2): 2749-2761.
[35]
Wan J, Geng S, Zhao H, et al. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration[J]. Journal of Controlled Release, 2016, 235: 328-336.
[36]
Li Y, Ge X, Li Z, et al. Application of temperature-sensitive liquid embolic agent loaded with oxaliplatin in the TACE procedure for rabbit VX2 gastric cancer[J]. Drug Delivery and Translational Research, 2024, 14(3):705-717.
[37]
Shi X, Gao H, Dai F, et al. A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries[J]. Biomaterials Science, 2016, 4(11): 1673-1681.
[38]
Liang R, Yu H, Wang L, et al. Highly tough hydrogels with the body temperature-responsive shape memory effect[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43563-43572.
[39]
Zhou H, Xie W, Guo A, et al. Temperature sensitive nanogels for real-time imaging during transcatheter arterial embolization[J]. Designed Monomers and Polymers, 2023, 26(1): 31-44.
[40]
Bouchot O, Aubin MC, Carrier M, et al. Temporary coronary artery occlusion during off-pump coronary artery bypass grafting with the new poloxamer P407 does not cause endothelial dysfunction in epicardial coronary arteries[J]. The Journal of Thoracic and Cardiovascular Surgery, 2006, 132(5): 1144-1149.
[41]
Wimmer-Greinecker G, Bouchot O, Verhoye J P, et al. Randomized clinical trial comparing a thermosensitive polymer (LeGoo) with conventional vessel loops for temporary coronary artery occlusion during off-pump coronary artery bypass surgery[J]. The Annals of thoracic surgery, 2011, 92(6): 2177-2183.
[42]
San Norberto EM, Taylor JH, Carrera S, et al. Intraoperative embolization with poloxamer 407 during surgical resection of a carotid body tumor[J]. Journal of Vascular Surgery, 2012, 56(6): 1782-1785.
[43]
曹广, 杨仁杰, 朱旭, 等新型温度敏感型栓塞剂用于原发性肝癌动脉栓塞的初步临床试验[J]. 介入放射学杂志, 2015, 24(7): 592-596.
[44]
Wang J, Pang Q, Liu Z, et al. A new liquid agent for endovascular embolization: initial clinical experience[J]. ASAIO Journal, 2009, 55(5): 494-497.
[45]
陈坚, 连伟, 吴迪圣. 温度敏感型液体栓塞剂经支气管动脉栓塞治疗咯血的短期疗效及安全性分析[J]. 医学影像学杂志, 2023, 33(08): 1390-1393.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 王友芳, 李兴超, 刘清敏, 刘德彬, 刘松伍, 郭冬冬, 车峰远. 应激性高血糖指数对经皮冠状动脉介入术后急性心肌梗死患者发生主要不良心脑血管事件的预测价值[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 124-129.
[3] 吴俊嶺, 孟科, 刘江涛, 孙刚. 基于HVPG分层的门脉高压内镜治疗中远期疗效研究[J]. 中华腔镜外科杂志(电子版), 2024, 17(02): 100-105.
[4] 邢颖, 程石. 巨脾外科治疗现状与介入治疗序贯手术策略[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 253-258.
[5] 杨金朔, 吴桥伟, 王春雷, 史怀璋. 脑血管内支架成形术后再狭窄的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 174-179.
[6] 牟超鹏, 宗斌, 刘奕, 史美英, 徐杜娟, 冯春光. 经远端桡动脉与经常规桡动脉行急诊冠脉介入诊疗后穿刺部位血肿的对比[J]. 中华临床医师杂志(电子版), 2024, 18(03): 275-282.
[7] 李超迪, 刘娟芳, 闫肃, 秦胜东, 张镐哲, 常琼方, 韩新巍, 张建好. 血管性介入治疗在宫颈癌大出血患者中的临床疗效[J]. 中华介入放射学电子杂志, 2024, 12(03): 217-220.
[8] 徐啸阳, 张帅, 仲斌演, 沈健, 朱晓黎. 血管腔内介入治疗肾动脉瘤的临床疗效分析[J]. 中华介入放射学电子杂志, 2024, 12(02): 137-143.
[9] 林永俭, 谢雪花, 郝莉茹, 刘丽, 马英东. 优化急诊绿色通道对急性心肌梗死介入治疗患者救治时间的影响[J]. 中华介入放射学电子杂志, 2024, 12(02): 185-189.
[10] 刘一人, 崔世军, 佟铸, 郭建明, 杨盛家, 谷涌泉, 郭连瑞. 急性肠系膜上动脉栓塞的介入治疗[J]. 中华介入放射学电子杂志, 2024, 12(02): 131-136.
[11] 郭方明, 赵明俐, 颜凡辉, 刘萌萌, 王阳, 赵英杰, 刘远航, 张艳芬, 詹景冬. 光学相干断层成像在急性心肌梗死冠状动脉分层斑块病变中的应用[J]. 中华诊断学电子杂志, 2024, 12(02): 73-79.
[12] 张长东, 李庚, 钟禹成, 田军, 尚小珂, 董念国. 2023年先天性心脏病介入治疗年度报告[J]. 中华心脏与心律电子杂志, 2024, 12(02): 72-78.
[13] 单兴华, 唐文栋, 赵仙先. 延伸导管在室间隔穿孔介入治疗的新应用一例[J]. 中华心脏与心律电子杂志, 2024, 12(02): 126-128.
[14] 周洪千, 张煜坤, 顾天舒, 胡苏涛, 姜超, 张雪, 张昊, 陶华岳, 刘行, 刘彤, 陈康寅. 既往出血性脑卒中患者行经皮冠脉介入治疗后不良事件的危险因素分析[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 323-329.
[15] 段丽娟, 蒋艳, 樊朝凤, 曹华. 颅内动脉瘤介入治疗术后不留置导尿管的效果及安全性[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 104-109.
阅读次数
全文


摘要