切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (03) : 234 -243. doi: 10.3877/cma.j.issn.2095-5782.2024.03.008

影像诊断

磁共振DWI及其ADC对乳腺导管原位癌伴微浸润腋窝淋巴结转移的诊断价值
姜超1,(), 夏旭东1, 王功夏1, 何向宇1, 王海彬1, 李媛1   
  1. 1. 455000 河南安阳,河南省安阳市肿瘤医院影像科
  • 收稿日期:2023-12-22 出版日期:2024-08-25
  • 通信作者: 姜超

Diagnostic value of magnetic resonance DWI and ADC in breast ductal carcinoma in situ with axillary lymph node metastasis

Chao Jiang1,(), Xudong Xia1, Gongxia Wang1, Xiangyu He1, Haibin Wang1, Yuan Li1   

  1. 1. Department of Imaging, Anyang Cancer Hospital, Henan Anyang 455000, China
  • Received:2023-12-22 Published:2024-08-25
  • Corresponding author: Chao Jiang
引用本文:

姜超, 夏旭东, 王功夏, 何向宇, 王海彬, 李媛. 磁共振DWI及其ADC对乳腺导管原位癌伴微浸润腋窝淋巴结转移的诊断价值[J]. 中华介入放射学电子杂志, 2024, 12(03): 234-243.

Chao Jiang, Xudong Xia, Gongxia Wang, Xiangyu He, Haibin Wang, Yuan Li. Diagnostic value of magnetic resonance DWI and ADC in breast ductal carcinoma in situ with axillary lymph node metastasis[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(03): 234-243.

目的

探讨磁共振扩散加权成像(diffusion weighted imaging,DWI)及其表观扩散系数(apparent diffusion coefficient,ADC)对乳腺导管原位癌(ductal carcinoma in situ,DCIS)伴微浸润(micro-invasio,Mi)腋窝淋巴结(axillary lymph nodes,ALN)转移的诊断价值。

方法

选取2018年2月至2021年3月于河南省安阳市肿瘤医院行磁共振成像(magnetic resonance imaging,MRI)常规平扫、DWI且经术后病理结果均为DCIS-Mi的女性患者120例纳入训练集,另将2018年11月至2019年8月收治的女性DCIS-Mi患者51例纳入验证集。根据术后病理诊断结果将训练集患者分别分为阳性组(ALN转移)与阴性组(无ALN转移)。训练集中,阳性组17例,阴性组103例。收集患者的一般临床资料及ADC图中ALN纹理特征,比较训练集中阳性组和阴性组纹理特征及一般临床资料;采用LASSO回归及Logistic回归分析筛选影响因素。基于筛选的影响因素构建列线图模型,并对模型进行评价。各独立因素与DCIS-Mi患者发生ALN转移风险的相关性采用Spearman相关性分析。

结果

变异度、偏度、峰度、1%ADC值、10%ADC值、能量、和方差、和熵、熵是影响DCIS-Mi患者发生ALN转移的独立影响因素(P < 0.05)。1%ADC值与DCIS-Mi患者发生ALN转移风险呈明显负相关(P < 0.05),变异度、偏度、峰度、10%ADC值、能量、和方差、和熵、熵与DCIS-Mi患者发生ALN转移风险呈明显正相关(P < 0.05)。基于独立影响因素构建的Nomogram模型具有较高的特异性和灵敏度,临床适用性较高。

结论

基于ADC图纹理参数构建的列线图模型预测DCIS-Mi患者ALN转移具有较好的预测效能。

Objective

To investigate the diagnostic value of DWI and ADC in axillary lymph node (ALN) metastasis of breast ductal carcinoma in situ (DCIS) with micro-invasion (Mi).

Method

A total of 120 female patients who underwent conventional magnetic resonance imaging (MRI) scan, DWI and postoperative pathological results of DCIS-Mi in Anyang Cancer Hospital of Henan Province from February 2018 to March 2021 were included in the training set. In addition, 51 female DCIS-Mi patients admitted from November 2018 to August 2019 were included in the validation set. According to the results of postoperative pathological diagnosis, the patients in the training set were divided into the positive group (ALN metastasis) and the negative group (no ALN metastasis). In the training set, there were 17 cases in the positive group and 103 cases in the negative group. The patient's general clinical data and the ADC ALN texture feature in the figure were collected and compared between positive group and negative group. LASSO regression and Logistic regression analysis were used to screen the influencing factors. A nomogram model was constructed and evaluated based on the selected influencing factors. The correlation between independent factors and the risk of ALN metastasis in DCIS-Mi patients was analyzed using Spearman correlation analysis.

Result

Variation, skewness, kurtosis, 1%ADC value, 10%ADC value, energy, variance of sum, entropy of sum and entropy were independent factors affecting ALN metastasis in patients with DCIS-Mi (P < 0.05). The 1%ADC value was negatively correlated with the risk of ALN metastasis in DCIS-Mi patients (P < 0.05), while variation, skewness, kurtosis, 10%ADC value, energy, variance of sum, entropy of sum and entropy were positively correlated with the risk of ALN metastasis in DCIS-Mi patients (P < 0.05). The Nomogram model based on independent factors has high specificity, sensitivity and clinical applicability.

Conclusion

The Nomogram model based on ADC texture parameters is effective in predicting ALN metastasis in DCIS-Mi patients.

图1 DCIS-Mi伴左侧ALN转移(阳性组)1A:增强MRI T1WI显示ALN边缘毛糙,不均匀强化;1B:于增强T1WI中勾画ALN的ROI(红色区域);1C:ADC图显示ALN呈不均匀低信号;1D:于ADC图中勾画ALN的ROI(红色区域)。MRI为磁共振成像;ALN为腋窝淋巴结;ROI为感兴趣区;ADC为表观扩散系数;DCIS-Mi为乳腺导管原位癌伴微浸润。
图2 DCIS-Mi伴左侧ALN增生(阴性组)2A:增强MRI T1WI显示ALN边缘光滑,均匀强化;2B:于增强T1WI中勾画ALN的ROI(红色区域);2C:ADC图显示ALN呈稍高信号;2D:于ADC图中勾画ALN的ROI(红色区域)。MRI为磁共振成像;ALN为腋窝淋巴结;ROI为感兴趣区;ADC为表观扩散系数;DCIS-Mi为乳腺导管原位癌伴微浸润。
表1 阳性组和阴性组的一般临床资料及纹理参数比较(±s
指标 阳性组(17例) 阴性组(103例) F/t/χ2 P
年龄[例(%)]     0.403 0.526
< 45岁 9 46    
≥45岁 8 57    
组织学分级[例(%)]     4.199 0.123
低级别 2 22    
中级别 6 52    
高级别 9 29    
原发灶肿瘤大小[例(%)]     0.235 0.628
< 2.5 cm 9 48    
≥2.5 cm 8 55    
浸润病灶数目[例(%)]     4.143 0.042
单个 8 74    
≥2个 9 29    
粉刺样坏死[例(%)]     0.840 0.360
2 22    
15 81    
脉管瘤栓[例(%)]     5.032 0.025
3 4    
14 99    
ER状态[例(%)]     3.996 0.046
阳性 11 40    
阴性 6 63    
PR状态[例(%)]     0.100 0.752
阳性 4 28    
阴性 13 75    
HER-2 [例(%)]     0.157 0.692
阳性 13 74    
阴性 4 29    
Ki-67指数[例(%)]     3.861 0.049
<20% 1 29    
≥20% 16 74    
变异度 286.51±30.36 205.83±25.81 11.642 < 0.001
均值 125.22±41.82 170.64±52.52 3.389 0.001
偏度 0.84±0.50 -0.25±0.63 6.781 < 0.001
峰度 0.23±0.07 -0.70±0.10 36.821 < 0.001
1%ADC值 75.52±29.31 127.24±35.14 5.742 < 0.001
10%ADC值 107.81±20.92 92.74±15.09 3.597 < 0.001
50%ADC值 130.79±31.05 115.86±25.27 2.183 0.031
90%ADC值 150.85±32.44 138.06±21.84 2.074 0.040
99%ADC值 162.56±34.86 145.62±29.13 2.159 0.033
能量(×10-3 30.86±7.29 14.85±5.33 10.851 < 0.001
对比度 9.43±3.72 11.32±4.15 1.763 0.080
相关 0.78±0.26 0.69±0.21 1.581 0.117
平方和 28.04±9.31 21.82±8.95 2.640 0.009
逆差距 0.28±0.13 0.34±0.16 1.467 0.145
均和 64.20±17.26 78.40±20.21 2.735 0.007
和方差 103.77±18.51 39.28±12.95 17.805 < 0.001
和熵 1.48±0.27 1.30±0.15 4.015 < 0.001
1.96±0.33 1.44±0.26 7.342 < 0.001
差方差 3.87±0.95 4.22±1.23 1.118 0.266
差熵 0.80±0.22 0.76±0.15 0.947 0.345
图3 特征筛选3A:表示λ(最优参数值)= 0.020时绘制垂直线,选取17个变量关系图;3B:表示调整λ后,各个特征系数与log(λ)的关系图。
图4 影响DCIS-Mi患者发生ALN转移的Logistic回归分析森林图注:DCIS-Mi为乳腺导管原位癌伴微浸润;ALN为腋窝淋巴结;ADC为表观扩散系数。
图5 DCIS-Mi患者发生ALN转移的Nomogram预测模型注:DCIS-Mi为乳腺导管原位癌伴微浸润;ALN为腋窝淋巴结;ADC为表观扩散系数。
图6 列线图模型的校正曲线验证图
图7 列线图模型的ROC曲线验证图注:ROC曲线为受试者工作特征曲线;AUC为曲线下面积。
图8 列线图模型的决策曲线图
图9 ADC纹理参数与DCIS-Mi患者发生ALN转移的相关性分析注:DCIS-Mi为乳腺导管原位癌伴微浸润;ALN为腋窝淋巴结;ADC为表观扩散系数。
[1]
Crimini E, Corti C, Repetto M, et al. Systemic treatment of ductal carcinoma in situ of the breast[J]. Chirurgia (Bucur), 2021, 116(5 Suppl): S97-S104.
[2]
van Seijen M, Lips EH, Thompson AM, et al. Ductal carcinoma in situ: to treat or not to treat, that is the question[J]. Br J Cancer, 2019, 121(4): 285-292.
[3]
Wright FC, Souter LH, Kellett S, et al. Primary excision margins, sentinel lymph node biopsy, and completion lymph node dissection in cutaneous melanoma: a clinical practice guideline[J]. Curr Oncol, 2019, 26(4): e541-e550.
[4]
Cusimano MC, Vicus D, Pulman K, et al. Assessment of sentinel lymph node biopsy vs lymphadenectomy for intermediate- and high-grade endometrial cancer staging[J]. JAMA Surg, 2021, 156(2): 157-164.
[5]
Nougaret S, Horta M, Sala E, et al. Endometrial cancer MRI staging: updated guidelines of the european society of urogenital radiology[J]. Eur Radiol, 2019, 29(2): 792-805.
[6]
Panebianco V, Villeirs G, Weinreb JC, et al. Prostate magnetic resonance imaging for local recurrence reporting (PI-RR): international consensus-based guidelines on multiparametric magnetic resonance imaging for prostate cancer recurrence after radiation therapy and radical prostatectomy[J]. Eur Urol Oncol, 2021, 4(6): 868-876.
[7]
Peng S, Guo Y, Zhang X, et al. High-resolution DWI with Simultaneous multi-slice readout-segmented echo planar imaging for the evaluation of malignant and benign breast lesions[J]. Diagnostics (Basel), 2021, 11(12): e2273.
[8]
Stanciu-Pop C, Nollevaux MC, Berlière M, et al. Morphological intratumor heterogeneity in ductal carcinoma in situ of the breast[J]. Virchows Arch, 2021, 479(1): 33-43.
[9]
Zheng J, Zhou T, Li F, et al. Clinic-pathological features of breast ductal carcinoma in situ with micro-invasion[J]. Cancer Invest, 2020, 38(2): 113-121.
[10]
Coleman WB. Breast ductal carcinoma in situ: precursor to invasive breast cancer[J]. Am J Pathol, 2019, 189(5): 942-945.
[11]
Han S, Qiu F, Han Y, et al. Clinical and imaging characteristics of breast ductal carcinoma in situ with microinvasion[J]. J Appl Clin Med Phys, 2021, 22(1): 293-298.
[12]
Ohno M, Ohno N, Miyati T, et al. Triexponential diffusion analysis of diffusion-weighted imaging for breast ductal carcinoma in situ and invasive ductal carcinoma[J]. Magn Reson Med Sci, 2021, 20(4): 396-403.
[13]
Allarakha A, Gao Y, Jiang H, et al. Predictive ability of DWI/ADC and DCE-MRI kinetic parameters in differentiating benign from malignant breast lesions and in building a prediction model[J]. Discov Med, 2019, 27(148): 139-152.
[14]
Egnell L, Vidić I, Jerome NP, et al. Stromal collagen content in breast tumors correlates with in vivo diffusion-weighted imaging: a comparison of multi b-Value DWI with histologic specimen from benign and malignant breast lesions[J]. J Magn Reson Imaging, 2020, 51(6): 1868-1878.
[15]
Tsvetkova S, Doykova K, Vasilska A, et al. Differentiation of benign and malignant breast lesions using ADC values and ADC ratio in breast MRI[J]. Diagnostics (Basel), 2022, 12(2): e332.
[16]
Eun NL, Kang D, Son EJ, et al. Texture analysis using machine learning-based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy[J]. Eur Radiol, 2021, 31(9): 6916-6928.
[17]
Singh D, Kumar V, Das CJ, et al. Characterisation of prostate cancer using texture analysis for diagnostic and prognostic monitoring[J]. NMR Biomed, 2021, 34(6): e4495.
[18]
Li X, Jiang N, Zhang C, et al. Value of conventional magnetic resonance imaging texture analysis in the differential diagnosis of benign and borderline/malignant phyllodes tumors of the breast[J]. Cancer Imaging, 2021, 21(1): e29.
[19]
Chang FC, Wong TT, Wu KS, et al. Magnetic resonance radiomics features and prognosticators in different molecular subtypes of pediatric medulloblastoma[J]. PLoS One, 2021, 16(7): e0255500.
[20]
Zaworski C, Cheah J, Koff MF, et al. MRI-based texture analysis of trabecular bone for opportunistic screening of skeletal fragility[J]. J Clin Endocrinol Metab, 2021, 106(8): 2233-2241.
[21]
Ye J, Ling J, Lv Y, et al. Pulmonary adenocarcinoma appearing as ground-glass opacity nodules identified using non-enhanced and contrast-enhanced CT texture analysis: a retrospective analysis[J]. Exp Ther Med, 2020, 19(4): 2483-2490.
[22]
Pantic I, Jeremic R, Dacic S, et al. Gray-level co-occurrence matrix analysis of granule neurons of the hippocampal dentate gyrus following cortical injury[J]. Microsc Microanal, 2020, 26(1): 166-172.
[23]
Yamada I, Oshima N, Miyasaka N, et al. Texture analysis of apparent diffusion coefficient maps in cervical carcinoma: correlation with histopathologic findings and prognosis[J]. Radiol Imaging Cancer, 2020, 2(3): e190085.
[24]
Wu J, Zhang H, Li L, et al. A nomogram for predicting overall survival in patients with low-grade endometrial stromal sarcoma: a population-based analysis[J]. Cancer Commun (Lond), 2020, 40(7): 301-312.
[25]
López C, Bosch R, Orero G, et al. The immune response in nonmetastatic axillary lymph nodes is associated with the presence of axillary metastasis and breast cancer patient outcome[J]. Am J Pathol, 2020, 190(3): 660-673.
[1] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[2] 谢峰, 伍玉晗, 赵胜, 杨小红, 王玉波, 石珍, 范建华, 章敏. 产前超声和MRI诊断胎儿硬脑膜窦畸形的联合应用[J]. 中华医学超声杂志(电子版), 2024, 21(03): 275-280.
[3] 戴超超, 蒋天安, 包凌云, 谭艳娟. 乳腺局部结构扭曲病变的X线摄影与自动乳腺容积超声、乳腺增强磁共振的对比研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1237-1241.
[4] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[5] 王莉, 曹蕾, 王亚丹, 张伟. Krabbe病1例临床分析并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 339-345.
[6] 陈海香, 王元银, 蒋盼. 冠突过长患者的临床表现及磁共振影像学分析[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 169-174.
[7] 谢丽春, 欧庆芬, 张秋萍, 叶升. 简化和标准肝脏MRI方案在结直肠癌肝转移患者随访中的临床应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 434-437.
[8] 陈朔. 自体淋巴结移植治疗淋巴水肿研究进展[J]. 中华移植杂志(电子版), 2024, 18(02): 123-128.
[9] 臧书芹, 陈巧玲, 江思源, 朱晓明, 沈浮, 王颢, 张卫, 邵成伟. 基于直肠高分辨MRI的直肠侧系膜分析及其临床价值的研究[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 312-320.
[10] 吴浩凡, 刘元豪, 张锋敏, 张现中, 朱金浩, 黄嘉莹, 刘忠臣, 丁良福, 庄成乐. 基于术前MRI的盆底解剖参数对超低位直肠癌精准功能保肛手术时间的影响[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 209-216.
[11] 蒋启红, 任勇军. 钆塞酸二钠增强MRI在评估肝功能的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 183-187.
[12] 黄霓, 张仕勇, 兰茜琳, 周奕, 明兵. 双源CT与MRI在结直肠癌术前分期中的临床价值分析[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 57-61.
[13] 牟鳄贤, 李卓璇, 董浩, 于淼, 纪娟, 徐佳, 王浩, 刘世伟. 初始腋窝淋巴结转移乳腺癌新辅助治疗后腋窝病理完全缓解的预测因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1027-1032.
[14] 田春蕾, 李瑞雨, 肖凌勇, 刘艺, 王晓璇, 戴晓矞. 针刺治疗缺血性卒中后肢体功能障碍的神经影像研究概况[J]. 中华针灸电子杂志, 2024, 13(02): 78-82.
[15] 胡秀朝, 徐霁华, 米荷音, 郝咏刚, 秦伟, 王韵. 高分辨磁共振成像在颈部动脉夹层致脑卒中诊断及随访研究中的价值[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 140-144.
阅读次数
全文


摘要