切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (03) : 228 -233. doi: 10.3877/cma.j.issn.2095-5782.2024.03.007

基础研究

不同降温法延长椎体成形术中骨水泥注射时间的骨水泥材料性能研究
张帅1, 刘凯1, 王刚刚1, 倪才方1, 陈珑1,()   
  1. 1. 215006 江苏苏州,苏州大学附属第一医院介入科
  • 收稿日期:2024-04-30 出版日期:2024-08-25
  • 通信作者: 陈珑
  • 基金资助:
    苏州市医疗卫生科技创新应用基础研究项目(SKJY2021054)

Experimental study on the materials properties of bone cement treated by different cooling methods to prolong it's injection time in the vertebroplasty

Shuai Zhang1, Kai Liu1, Ganggang Wang1, Caifang Ni1, Long Chen1,()   

  1. 1. Department of Interventional Radiology, the First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, China
  • Received:2024-04-30 Published:2024-08-25
  • Corresponding author: Long Chen
引用本文:

张帅, 刘凯, 王刚刚, 倪才方, 陈珑. 不同降温法延长椎体成形术中骨水泥注射时间的骨水泥材料性能研究[J]. 中华介入放射学电子杂志, 2024, 12(03): 228-233.

Shuai Zhang, Kai Liu, Ganggang Wang, Caifang Ni, Long Chen. Experimental study on the materials properties of bone cement treated by different cooling methods to prolong it's injection time in the vertebroplasty[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(03): 228-233.

目的

探索经不同降温处理的骨水泥其聚合时间、温度和力学性能变化。

方法

骨水泥按不同降温法分成三个大组,A组为对照组;B组为4℃预降温组,将骨水泥置于4℃中24 h再混合粉液;C组为0℃快速降温组,将骨水泥粉液混合后置于0℃快速降温。每一大组再分成2个小组,第一小组待骨水泥进入黏稠期后将其置于22℃继续实验(A1,B1,C1组),第二小组则待骨水泥进入黏稠期后,再置于37℃(A2,B2,C2组)继续实验。分别测量骨水泥的聚合时间(稀薄期、黏稠期、硬化期的维持时间)、聚合温度及力学性能(强度和刚度),采用单因素方差分析比较A1、B1、C1组间以及A2、B2、C2组间的材料性能差异。采用配对t检验比较同一大组的两小组(A1-A2,B1-B2,C1-C2)间材料性能差异,P < 0.05为差异有统计学意义。

结果

C1组黏稠期时间(1 880.0 ± 59.9)s较A1和B1组延长,差异有统计学意义(P < 0.05);C2组黏稠期时间(193.8 ± 14.7)s较C1组缩短,且与A2和B2组差异有统计学意义。C1组聚合最高温度(11.6 ± 0.7)℃较A1和B1组降低,差异有统计学意义(P < 0.05),C2组聚合最高温度(95.7 ± 2.2)℃较C1组升高,且与A2和B2组差异无统计学意义(P > 0.05)。C1组骨水泥的强度(81.3 ± 3.6)MPa低于A1和B1组,差异有统计学意义(P < 0.05),C2组强度(90.9 ± 3.5)MPa较C1组提升,且与A2和B2组的差异无统计学意义(P > 0.05)。A1、B1、C1组间,以及A2、B2、C2组间的骨水泥刚度差异无统计学意义(P > 0.05)。

结论

0℃快速降温以延长骨水泥可注射工作时间的方法,是一种安全、可行、有效的方法。

Objective

To explore the changes of polymerization time, polymerization temperature and mechanical properties of bone cement treated with different cooling treatments.

Methods

Methyl acrylate bone cement was divided into three groups according to different cooling methods. Group A was the control group. Group B was a 4℃ pre-cooling group, in which the bone cement was placed in a 4℃ temperature for 24 hours before powder and liquid mixing. Group C was the 0℃ rapid cooling group, and the powder and liquid of the bone cement were mixed and then placed in the 0℃ for rapid cooling. Each group was further divided into two subgroups. The first subgroup waited for the cement to enter the viscous phase and then placed it at 22℃ to continue the experiment (group A1, B1, and C1), and the second subgroup waited for the cement to enter the viscous phase and then placed it at 37℃ to continue the experiment (group A2, B2, and C2). The three indexes of bone cement, which include the polymerization time (the maintenance time of rarefaction phase, viscous phase, and hardening phase), the polymerization temperature, and the mechanical properties (strength and stiffness), were measured. The material properties among subgroups A1, B1, and C1; and among subgroups A2, B2, and C2 were compared by one-way ANOVA. The paired t test was used to compare the differences of material properties between the two subgroups (A1-A2, B1-B2, C1-C2) of the same group, and P < 0.05 was considered statistically significant.

Results

The duration of the viscous phase (1 880.0 ± 59.9 seconds) of group C1 was significantly longer than that of group A1 and B1 (P < 0.05). The duration of viscous phase (193.8 ± 14.7 seconds) of the group C2 was significantly shorter than that of group C1, furthermore, there was no significant difference among groups C2, A2 and B2. The maximum polymerization temperature of the bone cement in group C1 (11.6 ± 0.7)℃ was significantly lower than that in group A1 and B1 (P < 0.05), however, the maximum polymerization temperature of the group C2 (95.7 ± 2.2)℃ was significantly higher than that of group C1, furthermore, there was no significant difference among groups C2, A2 and B2. The strength of the bone cement in group C1 (81.3 ± 3.6) Mpa was significantly lower than that in group A1 and B1 (P < 0.05), however, the strength of the bone cement in group C2 (90.9 ± 3.5) Mpa, was significantly higher than that in group C1, furthermore, there was no significant difference among groups C2, A2 and B2. There was no significant difference in cement stiffness among groups A1, B1, and C1, and among groups A2, B2, and C2.

Conclusion

Rapid cooling at 0℃ to prolong the working time of bone cement injection is a safe, feasible and effective method.

表1 不同温度降温处理骨水泥,再置于22℃下继续聚合的骨水泥材料性能表
表2 不同温度降温处理骨水泥,再置于37℃下继续聚合的骨水泥材料性能
表3 22℃和37℃下完成聚合的骨水泥材料性能配对t检验结果
[1]
Kushchayev SV, Wiener PC, Teytelboym OM, et al. Percutaneous vertebroplasty: a history of procedure, technology, culture, specialty, and economics[J]. Neuroimaging Clin N Am, 2019, 29(4): 481-494.
[2]
史慧娟, 廖骞, 陈珑, 等. CT结合C臂透视引导经皮椎体成形术治疗疼痛性颈椎转移癌[J]. 中华介入放射学电子杂志, 2021, 9(1): 65-69.
[3]
Williams TD, Adler T, Smokoff L, et al. Bone cements used in vertebral augmentation: a state-of-the-art narrative review[J]. J Pain Res, 2024, 17: 1029-1040
[4]
Boger A, Wheeler KD, Schenk B, et al. Clinical investigations of polymethylmethacrylate cement viscosity during vertebroplasty and related in vitro measurements[J]. Eur Spine J, 2009, 18(9): 1272-1278.
[5]
Lai PL, Tai CL, Chu IM, et al. Hypothermic manipulation of bone cement canextend the handling time during vertebroplasty[J]. BMC Musculoskelet Disord, 2012, 13: 198.
[6]
Sui P, Yu T, Sun S, et al. Advances in materials used for minimally invasive treatment of vertebral compression fractures[J]. Front Bioeng Biotechnol, 2023, 11: 1303678.
[7]
Chavali R, Resijek R, Knight SK, et al. Extending polymerization time of polymethylmethacrylate cement in percutaneous vertebroplasty with ice bath cooling[J]. AJNR Am J Neuroradiol, 2003, 24(3): 545-546.
[8]
James SL, Connell DA. The effect of temperature reduction on cement working time in percutaneous vertebroplasty[J]. Clin Radiol, 2006, 61(9): 797-799.
[9]
Shi X, Cui Y, Pan Y, et al. Prediction of early vascular cement leakage following percutaneous vertebroplasty in spine metastases: the Peking University First Hospital Score (PUFHS)[J]. BMC Cancer, 2021, 21(1): 764.
[10]
Luo Y, Yang DM, Yang HM, et al. Innovative minimally invasive implants for osteoporosis vertebral compression fractures[J]. Front Med (Lausanne), 2023, 10: 1161174.
[11]
Teng F, Xu XJ, Liu Q. A modified wire-loop snare technique for the retrieval of a large cardiac cement embolus caused by cement leakage after percutaneous vertebroplasty[J]. J Interv Med, 2019, 2(1): 38-41.
[12]
张洋, 龙浩, 肖杰, 等. 经皮椎体成形术中低温骨水泥灌注技术改进前后疗效比较[J]. 中国修复重建外科杂志, 2020, 34(4): 428-434.
[13]
胡晓辉, 汤俊连, 孟晓辉, 等. 温差注射法在椎体成形术中预防骨水泥外渗的临床研究[J]. 中国骨伤, 2019, 32(7): 620-623.
[14]
Chen W, Zhang H. An experimental study on the impact of prosthesis temperature on the biomechanical properties of bone cement fixation[J]. BMC Surg, 2023, 23(1): 191.
[15]
Ademaj A, Veltsista DP, Ghadjar P, et al. Clinical evidence for thermometric parameters to guide hyperthermia treatment[J]. Cancers (Basel), 2022, 14(3): 625.
[16]
Zhou C, Meng X, Huang S, et al. Biomechanical study of different bone cement distribution on osteoporotic vertebral compression fracture-a finite element analysis[J]. Heliyon, 2024, 10(5): e26726.
[1] 李峰, 黎君友, 冯书堂, 李国平, 戴一凡. 冻存GGTA1/β4GalNT2双基因敲除近交系五指山小型猪猪皮异种移植的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 61-67.
[2] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[3] 李东杰, 贾晓明. 加强研究皮肤低温损伤机制以提高皮肤储存质量[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 93-97.
[4] 李琳, 杨文, 王晓东. 树脂陶瓷复合材料的研究及临床应用现状[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 80-88.
[5] 陈晓曼, 张海波, 薛曼婕, 魏波, 邵军, 韩晓燕. -80℃低温保藏对结直肠癌血浆miRNA标志物的影响[J]. 中华普通外科学文献(电子版), 2023, 17(01): 24-27.
[6] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[7] 杨洁, 王红叶, 张蕊. 低温透析模式预防透析中低血压的效果Meta分析[J]. 中华肾病研究电子杂志, 2023, 12(06): 314-322.
[8] 伦登兴, 徐丽娜, 李思影, 李世龙, 张伟航, 胡永成. 酸碱调节对硫酸钙骨水泥理化性能影响的体外研究[J]. 中华老年骨科与康复电子杂志, 2024, 10(03): 125-131.
[9] 张乾龙, 王继荣, 宋晨辉, 刘修信, 任政, 刘宇哲, 阿里木江·玉素甫, 覃祺, 冉建. 两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 209-217.
[10] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[11] 臧宇, 姚胜, 戎世捧, 田智超. 低温等离子射频清创联合负压封闭引流对腹壁术后切口感染的临床效果[J]. 中华临床医师杂志(电子版), 2023, 17(01): 37-42.
[12] 白晓辉, 张龙, 王永峰, 冯毅, 赵斌, 吕智, 徐朝健. 单侧与双侧经皮椎体成形术治疗Kummell病的疗效比较[J]. 中华老年病研究电子杂志, 2023, 10(02): 14-18.
[13] 潘鑫, 王忻, 王超, 顾慧, 吴敏, 唐加波, 崔恒熙, 李政. 亚低温治疗在脑卒中院前急救中的应用[J]. 中华卫生应急电子杂志, 2023, 09(03): 155-158.
[14] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
[15] 张钰, 张湘斌, 黄晓松, 潘晓彦. 亚低温联合脑室穿刺引流对老年性高分级动脉瘤性蛛网膜下腔出血患者脑血管状态的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 214-220.
阅读次数
全文


摘要