切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2021, Vol. 09 ›› Issue (02) : 210 -214. doi: 10.3877/cma.j.issn.2095-5782.2021.02.017

所属专题: 文献

综述

纳米材料在肿瘤微波诊疗中的研究进展
刘红怡1, 文烈伟1, 占美晓1, 陆骊工1,()   
  1. 1. 519000 广东珠海,暨南大学附属珠海医院(珠海市人民医院)介入医学科
  • 收稿日期:2021-01-12 出版日期:2021-05-25
  • 通信作者: 陆骊工
  • 基金资助:
    科技部国家重点研发计划子课题(2017YFA0205203); 广东省自然科学基金-面上项目(2020A1515011101,2021A1515011703)

Advances in nanomaterials for microwave-induced diagnosis and therapy of tumor

Hongyi Liu1, Liewei Wen1, Meixiao Zhan1, Ligong Lu1,()   

  1. 1. Department of Interventional Medicine, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Guangdong Zhuhai 519000, China
  • Received:2021-01-12 Published:2021-05-25
  • Corresponding author: Ligong Lu
引用本文:

刘红怡, 文烈伟, 占美晓, 陆骊工. 纳米材料在肿瘤微波诊疗中的研究进展[J]. 中华介入放射学电子杂志, 2021, 09(02): 210-214.

Hongyi Liu, Liewei Wen, Meixiao Zhan, Ligong Lu. Advances in nanomaterials for microwave-induced diagnosis and therapy of tumor[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2021, 09(02): 210-214.

近年来,随着纳米医学的飞速发展,纳米材料在生物医学领域,尤其是在肿瘤的诊断和治疗方面引起了科学家们越来越多的关注。纳米材料作为融合了多模态造影和药物递送等性能的多功能纳米平台,有望通过介导多模态分子影像实现早期肿瘤精确诊断,同时通过联合化疗、热疗等手段实现肿瘤的高效综合治疗。目前已开发一系列具有响应微波产生超声波、热量、活性氧自由基等性能的多功能纳米材料,其不仅可作为磁共振成像(MRI)成像、微波热声成像等成像造影剂,还可通过介导热声治疗、热疗和微波动力治疗等治疗手段精准杀灭肿瘤。文章对响应微波的纳米材料类型及其在肿瘤诊疗方面的研究进展进行了简要概述。

In recent years, with the rapid development of nanomedicine, the tumor diagnosis and therapy dependent on multifunctional nanomaterials have received great attention. Nanomaterials as integrated multimodal imaging and drug delivery performance of multifunctional nano platforms are expected to achieve accurate diagnosis of early tumors by mediating multimodal molecular images. A series of multifunctional nanomaterials with the properties of generating ultrasonic, heat and reactive oxygen species (ROS) under microwave excitation have been developed. These can not only be used as imaging contrast agent such as MRI imaging and microwave thermoacoustic imaging, but also kill tumors accurately by mediating thermoacoustic therapy, thermotherapy and microwave dynamic therapy. This paper briefly summarized the types of microwave-absorbing nanomaterials and their research progress in tumor diagnosis and treatment.

[10]
彭智勇,时粉周. 微波在临床治疗上的应用进展[J]. 海军医学杂志, 2009, 30(2): 180-183.
[11]
Wu Q, Jie Y, Li M, et al. Nanoengineering of nanorattles for tumor treatment by CT imaging-guided simultaneous enhanced microwave thermal therapy and managing inflammation[J]. Biomaterials, 2018, 179: 122-133.
[12]
邵文轶,周蓓蓓,王刚. 早期乳腺肿瘤的超宽带微波成像[J]. 微波学报, 2005, 21(3): 66-70.
[13]
许会,陈艳玲. 微波成像技术及其算法综述[J]. 无损检测,2012, 34(010): 67-71.
[14]
田雨波,钱鉴. 微波近场成像检测乳腺癌及其微波热疗[J]. 微波学报, 2003(03): 72-78.
[15]
Ding W, Lou C, Qiu J, et al. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice[J]. Nanomedicine, 2016, 12(1): 235-244.
[16]
Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208.
[17]
Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma[J]. CA Cancer J Clin, 2012, 62(6): 394-399.
[18]
Long D, Liu T, Tan L, et al. A multi-synergistic platform for tumor therapy by mild microwave irradiation-activated chemotherapy and enhanced ablation[J]. ACS Nano, 2016, 10(10): 9516-9528.
[19]
Ku G, Fornage BD, Jin X, et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging[J]. Technol Cancer Res Treat, 2005, 4(5): 559-566.
[20]
Zhong J, Lou C, Yang S, et al. Three-dimensional thermoacoustic imaging for early breast cancer detection[J]. Med Phys, 2012, 39(11): 6738-6744.
[21]
Wu Q, Xia N, Long D, et al. Dual-functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy[J]. Nano Lett, 2019, 19(8): 5277-5286.
[22]
Wang Z, Bi H, Wang P, et al. Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals[J]. Phys Chem Chem Phys, 2015, 17(5): 3796-3801.
[23]
Zhu W, Wang L, Zhao R, et al. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals[J]. Nanoscale, 2011, 3(7): 2862-2864.
[24]
Cheng FY, Su CH, Yang YS, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005, 26(7): 729-738.
[25]
Kim DK, Amin MS, Elborai S, et al. Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation[J]. J Appl Phys, 2005, 97(10): 413.
[26]
Ni S, Lin S, Pan Q, et al. Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals[J]. J. Phys. D: Appl. Phys, 2009, 42(5): 05504.
[27]
Pearce JA, Cook JR, Emelianov SY. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy[J]. Annu Int Conf IEEE Eng Med Biol Soc. 2010, 2010: 2751-2754.
[28]
Nie L, Ou Z, Yang S, et al. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection[J]. Med Phys, 2010, 37(8): 4193-4200.
[29]
Wen L, Yang S, Zhong J, et al. Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles[J]. Theranostics, 2017, 7(7): 1976-1989.
[30]
Li WS, Wang XJ, Zhang S, et al. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle[J]. Biomaterials, 2017, 131: 36-46.
[31]
Vlerken LV, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery[J]. Expert Opin Drug Del, 2006, 3(2): 205-216.
[32]
Shi H, Liu T, Fu C, et al. Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy[J]. Biomaterials, 2015, 44: 91-102.
[33]
Du Q, Fu C, Jian T, et al. Gelatin microcapsules for enhanced microwave tumor hyperthermia[J]. Nanoscale, 2015, 7(7): 3147-3154.
[34]
Zhai S, Hu X, Ji Z, et al. Pulsed microwave pumped drug-Free thermoacoustic therapy by high-biocompatible and safe metabolic polyarginine probes[J]. Nano Lett, 2019, 19(3): 1728-1735.
[35]
Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chem Rev, 2005, 105(4): 1025-1102.
[36]
Zhou H, Fu C, Chen X, et al. Mitochondria-targeted zirconium metal-organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors[J]. Biomater Sci, 2018, 6(6): 1535-1545.
[37]
James SL. Metal-organic frameworks[J]. Chem Soc Rev, 2003, 32(5): 276-288.
[38]
Min H, Wang J, Qi Y, et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy[J]. Adv Mater, 2019, 31(15): e1808200.
[39]
Simon-Yarza T, Mielcarek A, Couvreur P, et al. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine[J]. Adv Mater, 2018, 30(37): e1707365.
[40]
Zhou H, Fu C, Chen X, et al. Mitochondria-targeted zirconium metal-organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors[J]. Biomater Sci, 2018, 6(6): 1535-1545.
[41]
Fu C, Zhou H, Tan L, et al. Microwave-activated Mn-doped Zirconium metal-organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer[J]. ACS Nano, 2018, 12(3): 2201-2210.
[42]
Ma X, Ren X, Guo X, et al. Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy[J]. Biomaterials, 2019, 214: 119223.
[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30.
[2]
Chen X, Tan L, Liu T, et al. Micro-nano materials for tumor microwave hyperthermia: design, preparation, and application[J]. Curr Drug Deliv, 2017, 13(3): 1.
[3]
Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nat Nanotechnol, 2007, 2(12): 751.
[4]
Chaturvedi VK, Singh A, Singh VK, et al. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy[J]. Curr Drug Metab, 2019, 20(6): 416-429.
[5]
Perry JL, Reuter KG, Luft JC, et al. Mediating passive tumor accumulation through particle size, tumor type and location[J]. Nano Lett, 2017, 17(5): 2879-2886.
[6]
A HM, A JW, A TS, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review[J]. J. Control Release, 2000, 65(1-2): 271-284.
[7]
Cai W, Chen X.Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging[J]. Nat Protoc, 2008, 3(1): 89-96.
[8]
Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy[J]. Nanomedicine, 2011, 6(4): 715-728.
[9]
Chen Q, Wen J, Li H, et al. Recent advances in different modal imaging-guided photothermal therapy[J]. Biomaterials, 2016, 106: 144-166.
[1] 张瑞敏, 于杰, 于晓玲. 早期肾细胞癌的影像引导消融治疗[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 381-384.
[2] 任茂玲, 孙晓容, 何晓丽. CT引导下微波消融术在肺部结节治疗中的应用及术后并发症的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 718-720.
[3] 蒙姣姣, 胡刚, 欧阳涣堃. 肺癌术前淋巴结转移及MWA手术效果预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 547-549.
[4] 葛晓东, 龚明福, 白奇之, 赵刚, 甘慧, 戴书华. MSCT对原发性气管支气管腺样囊性癌的12例诊断及文献复习[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 344-348.
[5] 杨豆, 晋云, 王峻峰, 胡苹苹, 杨超, 韦翔曦. 腹腔镜超声引导下微波消融术在结直肠癌肝转移中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 114-116.
[6] 曾庆劲, 赵里汶, 吴宇轩, 贺需旗, 张兰霞, 余萱, 何娜, 郑荣琴, 李凯. 超声引导经皮热消融治疗邻近心脏的肝脏恶性肿瘤疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 49-54.
[7] 王晶晶, 邓旭, 张灵强, 黄汉生, 王海久, 樊海宁, 王金环, 吕明德, 阳丹才让. 超声造影评估肝泡型包虫病微波消融治疗效果[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 629-633.
[8] 叶齐, 高志星, 张鹏杰, 张瑞阳, 杨智義, 胡欣芫, 赵成俊, 王海久, 阳丹才让, 樊海宁, 张灵强. 微波消融治疗原发性肝癌现状及疗效评价[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 323-326.
[9] 江蜜, 柴楚星, 张树华, 唐勇, 胡青钢, 万赤丹, 熊俊. 微波消融联合手术切除治疗巨大肝血管瘤一例[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 320-322.
[10] 谢静, 毛先海, 杨建辉, 段小辉, 田朕安, 张雄, 高绪照. 再次肝切除与腹腔镜微波消融治疗复发性小肝癌临床疗效比较[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 258-262.
[11] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[12] 张勇创, 李威, 满文玲, 杨坡. 超声引导下微波消融治疗下肢静脉曲张的疗效观察[J]. 中华介入放射学电子杂志, 2023, 11(03): 218-222,246.
[13] 毛媛媛, 殷曰帅, 宓兵, 胡效坤. CT引导下经皮穿刺肺腺癌微波消融后致巨大空洞一例[J]. 中华介入放射学电子杂志, 2023, 11(03): 287-288.
[14] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[15] 袁园, 苏浩波. 急性肠系膜动脉缺血影像诊断与治疗的新进展[J]. 中华介入放射学电子杂志, 2022, 10(04): 444-450.
阅读次数
全文


摘要