[10] |
彭智勇,时粉周. 微波在临床治疗上的应用进展[J]. 海军医学杂志, 2009, 30(2): 180-183.
|
[11] |
Wu Q, Jie Y, Li M, et al. Nanoengineering of nanorattles for tumor treatment by CT imaging-guided simultaneous enhanced microwave thermal therapy and managing inflammation[J]. Biomaterials, 2018, 179: 122-133.
|
[12] |
邵文轶,周蓓蓓,王刚. 早期乳腺肿瘤的超宽带微波成像[J]. 微波学报, 2005, 21(3): 66-70.
|
[13] |
许会,陈艳玲. 微波成像技术及其算法综述[J]. 无损检测,2012, 34(010): 67-71.
|
[14] |
田雨波,钱鉴. 微波近场成像检测乳腺癌及其微波热疗[J]. 微波学报, 2003(03): 72-78.
|
[15] |
Ding W, Lou C, Qiu J, et al. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice[J]. Nanomedicine, 2016, 12(1): 235-244.
|
[16] |
Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208.
|
[17] |
Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma[J]. CA Cancer J Clin, 2012, 62(6): 394-399.
|
[18] |
Long D, Liu T, Tan L, et al. A multi-synergistic platform for tumor therapy by mild microwave irradiation-activated chemotherapy and enhanced ablation[J]. ACS Nano, 2016, 10(10): 9516-9528.
|
[19] |
Ku G, Fornage BD, Jin X, et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging[J]. Technol Cancer Res Treat, 2005, 4(5): 559-566.
|
[20] |
Zhong J, Lou C, Yang S, et al. Three-dimensional thermoacoustic imaging for early breast cancer detection[J]. Med Phys, 2012, 39(11): 6738-6744.
|
[21] |
Wu Q, Xia N, Long D, et al. Dual-functional supernanoparticles with microwave dynamic therapy and microwave thermal therapy[J]. Nano Lett, 2019, 19(8): 5277-5286.
|
[22] |
Wang Z, Bi H, Wang P, et al. Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals[J]. Phys Chem Chem Phys, 2015, 17(5): 3796-3801.
|
[23] |
Zhu W, Wang L, Zhao R, et al. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals[J]. Nanoscale, 2011, 3(7): 2862-2864.
|
[24] |
Cheng FY, Su CH, Yang YS, et al. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications[J]. Biomaterials, 2005, 26(7): 729-738.
|
[25] |
Kim DK, Amin MS, Elborai S, et al. Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation[J]. J Appl Phys, 2005, 97(10): 413.
|
[26] |
Ni S, Lin S, Pan Q, et al. Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals[J]. J. Phys. D: Appl. Phys, 2009, 42(5): 05504.
|
[27] |
Pearce JA, Cook JR, Emelianov SY. Ferrimagnetic nanoparticles enhance microwave heating for tumor hyperthermia therapy[J]. Annu Int Conf IEEE Eng Med Biol Soc. 2010, 2010: 2751-2754.
|
[28] |
Nie L, Ou Z, Yang S, et al. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection[J]. Med Phys, 2010, 37(8): 4193-4200.
|
[29] |
Wen L, Yang S, Zhong J, et al. Thermoacoustic imaging and therapy guidance based on ultra-short pulsed microwave pumped thermoelastic effect induced with superparamagnetic iron oxide nanoparticles[J]. Theranostics, 2017, 7(7): 1976-1989.
|
[30] |
Li WS, Wang XJ, Zhang S, et al. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle[J]. Biomaterials, 2017, 131: 36-46.
|
[31] |
Vlerken LV, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery[J]. Expert Opin Drug Del, 2006, 3(2): 205-216.
|
[32] |
Shi H, Liu T, Fu C, et al. Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy[J]. Biomaterials, 2015, 44: 91-102.
|
[33] |
Du Q, Fu C, Jian T, et al. Gelatin microcapsules for enhanced microwave tumor hyperthermia[J]. Nanoscale, 2015, 7(7): 3147-3154.
|
[34] |
Zhai S, Hu X, Ji Z, et al. Pulsed microwave pumped drug-Free thermoacoustic therapy by high-biocompatible and safe metabolic polyarginine probes[J]. Nano Lett, 2019, 19(3): 1728-1735.
|
[35] |
Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chem Rev, 2005, 105(4): 1025-1102.
|
[36] |
Zhou H, Fu C, Chen X, et al. Mitochondria-targeted zirconium metal-organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors[J]. Biomater Sci, 2018, 6(6): 1535-1545.
|
[37] |
James SL. Metal-organic frameworks[J]. Chem Soc Rev, 2003, 32(5): 276-288.
|
[38] |
Min H, Wang J, Qi Y, et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy[J]. Adv Mater, 2019, 31(15): e1808200.
|
[39] |
Simon-Yarza T, Mielcarek A, Couvreur P, et al. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine[J]. Adv Mater, 2018, 30(37): e1707365.
|
[40] |
Zhou H, Fu C, Chen X, et al. Mitochondria-targeted zirconium metal-organic frameworks for enhancing the efficacy of microwave thermal therapy against tumors[J]. Biomater Sci, 2018, 6(6): 1535-1545.
|
[41] |
Fu C, Zhou H, Tan L, et al. Microwave-activated Mn-doped Zirconium metal-organic framework nanocubes for highly effective combination of microwave dynamic and thermal therapies against cancer[J]. ACS Nano, 2018, 12(3): 2201-2210.
|
[42] |
Ma X, Ren X, Guo X, et al. Multifunctional iron-based Metal-Organic framework as biodegradable nanozyme for microwave enhancing dynamic therapy[J]. Biomaterials, 2019, 214: 119223.
|
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30.
|
[2] |
Chen X, Tan L, Liu T, et al. Micro-nano materials for tumor microwave hyperthermia: design, preparation, and application[J]. Curr Drug Deliv, 2017, 13(3): 1.
|
[3] |
Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nat Nanotechnol, 2007, 2(12): 751.
|
[4] |
Chaturvedi VK, Singh A, Singh VK, et al. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy[J]. Curr Drug Metab, 2019, 20(6): 416-429.
|
[5] |
Perry JL, Reuter KG, Luft JC, et al. Mediating passive tumor accumulation through particle size, tumor type and location[J]. Nano Lett, 2017, 17(5): 2879-2886.
|
[6] |
A HM, A JW, A TS, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review[J]. J. Control Release, 2000, 65(1-2): 271-284.
|
[7] |
Cai W, Chen X.Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging[J]. Nat Protoc, 2008, 3(1): 89-96.
|
[8] |
Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy[J]. Nanomedicine, 2011, 6(4): 715-728.
|
[9] |
Chen Q, Wen J, Li H, et al. Recent advances in different modal imaging-guided photothermal therapy[J]. Biomaterials, 2016, 106: 144-166.
|