切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 133 -139. doi: 10.3877/cma.j.issn.2095-5782.2023.02.007

基础研究

原位肝癌小鼠微波消融术后复发模型的构建
梁伟1, 王晓彬1, 洪笑阳1, 蔡明岳1, 梁礼聪1, 陈烨1, 黄培凯1, 刘铭宇1, 林立腾1, 朱康顺1,()   
  1. 1. 510000 广东广州,广州医科大学附属第二医院微创介入科
  • 收稿日期:2023-01-03 出版日期:2023-05-25
  • 通信作者: 朱康顺
  • 基金资助:
    国家自然科学基金(81903071); 陈晓平湖北省科学技术发展基金(CXPJJH11900009-01); 广州市科技计划基础与应用基础研究项目(202102020393); 广州市科技计划(202102010082)

The establishment of recurrence model after microwave ablation in mice with orthotopic hepatocellular carcinoma

Wei Liang1, Xiaobin Wang1, Xiaoyang Hong1, Mingyue Cai1, Licong Liang1, Ye Chen1, Peikai Huang1, Mingyu Liu1, Liteng Lin1, Kangshun Zhu1,()   

  1. 1. Department of Interventional Radiology, Minimally Invasive and Interventional Cancer Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangdong Guangzhou 510000, China
  • Received:2023-01-03 Published:2023-05-25
  • Corresponding author: Kangshun Zhu
引用本文:

梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J/OL]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.

Wei Liang, Xiaobin Wang, Xiaoyang Hong, Mingyue Cai, Licong Liang, Ye Chen, Peikai Huang, Mingyu Liu, Liteng Lin, Kangshun Zhu. The establishment of recurrence model after microwave ablation in mice with orthotopic hepatocellular carcinoma[J/OL]. Chinese Journal of Interventional Radiology(Electronic Edition), 2023, 11(02): 133-139.

目的

构建可模拟亚致死热应激状态的体外细胞及活体小鼠原位肝癌不完全热消融模型。

方法

将悬浮的单层H22细胞分为4组(37℃、42℃、47℃、50℃)分别置于6孔培养板中培养,热处理前8 h更换新鲜完全培养基,随后恒温水浴15 min进行热处理以构建亚致死热应激体外模型并置于37℃培养箱中继续培养。48 h后进行Western Blot实验检测EMT表型,并通过Cell Counting Kit-8(CCK-8)试剂盒检测细胞活力。沿小鼠腹中线开腹后暴露肝脏并于肝包膜下注射H22细胞(5×106个),待瘤体长径约等于8 mm后将小鼠随机分为完全消融组(complete ablation group,cMWA)、不完全消融组(incomplete ablation group,iMWA)及假手术组,并在开腹直视下沿瘤体长轴行微波消融以建立原位肝癌不完全热消融模型。消融后第14天复查MRI并采集肝脏标本进行组织病理学检查。

结果

接种H22细胞约14天后小鼠肿瘤达到预定肿瘤长径范围,肿瘤平均长径为(9.32±0.83)mm。消融术后14天,不完全消融组肿瘤平均长径(12.93±1.51)mm,且较消融前明显增大。免疫荧光染色结果显示iMWA组残瘤内见大量中性粒细胞浸润。Western blot结果显示亚致死热应激状态下肝癌细胞EMT表型的恶性转变,其中波形蛋白(Vimentin)、α-平滑肌肌动蛋白(α-SMA)表达上调,E钙黏附蛋白(E-cadherin)表达下调。

结论

亚致死热应激状态的体外细胞及活体小鼠原位肝癌不完全热消融模型成功构建,该状态下残瘤内大量中性粒细胞浸润,同时肝癌细胞可能转变为更具侵袭性的间充质表型并导致肿瘤进展。

Objective

To construct hepatocellular carcinoma (HCC) cells lines that can mimic sub-lethal heat shock (HS) in vitro and orthotopic HCC mouse model that received incomplete thermal ablation.

Methods

The suspension H22 cells were grown in 6-well plates, and the medium was replaced with fresh complete medium 8 hours before heat treatment. Then, the cells were divided into 4 groups for constant temperature water bath at 37°C, 42°C, 47°C, 50°C for 15 min, respectively. After the heat treatment was completed, the cells were maintained in a 37℃ incubator until detection. The phenotype of epithelial-mesenchymal transition (EMT) was detected by Western blot 48 hours later, and the cell viability was detected by Cell Counting Kit-8 (CCK-8) kit. The liver of mice was exposed by laparotomy along the abdomen midline and H22 cells (5×106) were injected through the hepatic capsule to conduct orthotopic HCC model. When the longest diameter of the tumor reached approximately 8 mm, the mice were randomly divided into complete ablation group (cMWA), incomplete ablation group (iMWA) and Control group treated with sham operation. Microwave ablation along the long axis of tumor was performed to establish the incomplete thermal ablation model of orthotopic HCC. MRI was performed for tumor measurement and liver specimens were collected for histopathological assessment at day 14 after microwave ablation.

Results

14 daysafter inoculation of H22 cells, the tumors reached average tumor diameter of 9.32 ± 0.83 mm which was predetermined to be suitable for microwave ablation. 14 days after microwave ablation, the average tumor diameter reached 12.93 ± 1.51mm in iMWA group, which were significantly bigger than preoperative period. In addition, immunofluorescence staining showed a large number of infiltrated neutrophils in the residual tumor of iMWA group. Western blot was used to observe the change in EMT-phenotype, results showed that the expressions of Vimentin and α-SMA were up-regulated and the expressions of E-cadherin were down-regulated.

Conclusions

HCC cells lines that can mimic Sub-lethal heat shock (HS) in vitro and orthotopic HCC mouse model that received incomplete thermal ablation were successfully constructed. There was substantial staining for neutrophils infiltration after incomplete ablation. Incomplete ablation may allow HCC cells to become more prone to migrate and to become more invasive.

图1 H22细胞37℃、42℃、47℃及50℃热处理后CCK8结果
图2 H22细胞37℃、42℃及47℃热处理后Western blot结果
图3、4 原位接种H22肝癌细胞7天、14天后肝癌模型的瘤体MRI显像
图5 接种后7天及14天肿瘤长径箱式图
图6、7 微波消融示意图,其中图7由左至右分别为不完全消融及完全消融范围(红圈)
图8、9 不完全消融组红外测温图
表1 各组消融前及消融后14天平均肿瘤长径(Mean±SD)
图10 假手术组、iMWA组与cMWA组术后14天指标对比10A~10C:3组肿瘤(红圈)大体标本;10D~10F:3组肿瘤病理染色(HE × 20);10G~10I:3组CD3免疫荧光。
[1]
中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2022年版)[J]. 肿瘤综合治疗电子杂志, 2022, 8(2): 16-53.
[2]
Tong Y, Yang H, Xu X, et al. Effect of a hypoxic microenvironment after radiofrequency ablation on residual hepatocellular cell migration and invasion[J]. Cancer Sci, 2017, 108(4): 753-762.
[3]
Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208.
[4]
Chen Y, Bei J, Liu M, et al. Sublethal heat stress-induced O-GlcNAcylation coordinates the Warburg effect to promote hepatocellular carcinoma recurrence and metastasis after thermal ablation[J]. Cancer Letters, 2021, 518: 23-34.
[5]
Scudellarl M. Drug development: try and try again[J]. Nature, 2014, 516(7529): S4-6.
[6]
Zender L, Spector MS, Xue W, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach[J]. Cell, 2006, 125(7): 1253-1267.
[7]
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2): 143-168.
[8]
赵兵兵, 李梓涛, 胡伟东,等.肝细胞肝癌的早期诊断与精准治疗[J]. 岭南现代临床外科, 2018, 18(5): 593-598.
[9]
程笑, 黄静, 李文飞, 等.微波消融治疗小肝癌的效果分析[J].中华肝脏病杂志, 2021, 29(11): 1059-1062.
[10]
全亚宁, 商晓杰, 孟璇, 等. 实时超声造影和融合影像导航下微波消融与手术治疗小肝癌患者疗效比较[J]. 实用肝脏病杂志, 2020, 23(4): 581-584.
[11]
Llovet JM, Chen Y, Wurmbach E, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis[J]. Gastroenterology, 2006, 131(6): 1758-1767.
[12]
席兆华. 肝癌射频消融治疗的并发症分析[Z]. 第7届全国疑难及重症肝病大会论文集[C]. 北京, 2013: 310-312.
[13]
Radjenovic B, Sabo M, Šoltes L, et al. On efficacy of microwave ablation in the thermal treatment of an early-stage hepatocellular carcinoma[J]. Cancers, 2021, 13(22): 5784.
[14]
Van ZF, Zulehner G, Petz M, et al. Epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Future Oncol, 2009, 5(8): 1169-1179.
[15]
Yoshida DS, Kornek M, Ikenaga N, et al. Sublethal heat treatment promotes epithelial-mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma[J]. Hepatology, 2013, 58(5): 1667-1680.
[16]
Kim HY, Min HK, Song HW, et al. Delivery of human natural killer cell-derived exosomes for liver cancer therapy: an in vivo study in subcutaneous and orthotopic animal models[J]. Drug Delivery, 2022, 29(1): 2897-2911.
[17]
Wang XD, Peng JB, Zhou CY, et al. Potential therapies for residual hepatoblastoma following incomplete ablation treatment in a nude mouse subcutaneous xenograft model based on lncRNA and mRNA expression profiles[J]. Oncology Reports, 2020, 43(6): 1915-1927.
[18]
张静, 刘彦仿, 杨守京, 等. 鼠源化抗肝癌免疫毒素的导向研究[J]. 肝胆外科杂志, 2003, 11(3): 223-226.
[19]
孙迪, 杨麟, 沈宜, 等. 热应激小鼠肝癌细胞(H_(22))源Exosomes的抗肿瘤免疫机制[J]. 复旦学报(医学版), 2009, 36(6): 681-691.
[20]
Ruzzenente A, Manzoni GD, Molfetta M, et al. Rapid progression of hepatocellular carcinoma after Radiofrequency Ablation[J]. World J Gastroenterol, 2004, 10(8): 1137-1140.
[21]
Obara K, Matsumoto N, Okamoto M, et al. Insufficient radiofrequency ablation therapy may induce further malignant transformation of hepatocellular carcinoma[J]. Hepatology International, 2008, 2(1): 116-123.
[22]
Wang X, Deng Q, Feng K, et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma cell progression via autophagy and the CD133 feedback loop[J]. Oncology Reports, 2018, 40(1): 241-251.
[23]
Shi L, Wang J, Ding N, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy[J]. Nat Commun, 2019, 10(1): 5421.
[24]
Ye W, Ma J, Wang F, et al. LncRNA MALAT1 regulates miR-144-3p to facilitate epithelial-mesenchymal transition of lens epithelial cells via the OS/NRF2/Notch1/snail pathway[J]. Oxid Med Cell Longev, 2020, 2020: 8184314.
[25]
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy[J]. Cell Mol Life Sci, 2011, 68(18): 3033-3046.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 马旦杰, 黄品同, 徐琛, 周芳芳, 潘敏强. 超声造影LI-RADS系统联合甲胎蛋白对有无高危因素背景人群肝细胞癌的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 288-296.
[3] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[4] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[5] 胡森焱, 徐冬, 方健, 谢冬冬, 王财庆. ICG荧光显影Laennec膜入路腹腔镜解剖性肝切除的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 513-516.
[6] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[7] 宋华传, 季鹏, 姚焕章, 王永帅, 张珅瑜, 宋瑞鹏, 王继洲. 腹腔镜肝切除术联合微波消融治疗多发性结直肠癌肝转移[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 222-226.
[8] 陈政, 叶庆旺, 赵东波, 石鑫, 吴建强, 余德才. 定位针引导下腹腔镜精准局部肝切除应用探索[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(02): 125-128.
[9] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[10] 莫鹏, 郭杏春, 梁秀娟, 王耀明. 超声引导与CT引导射频消融治疗肝细胞癌患者疗效及预后比较[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 151-154.
[11] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[12] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[13] 陆知非, 华永飞, 姜哲康, 高过, 江寅, 王高卿. 初始不可切除肝癌转化治疗的影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 268-274.
[14] 倪管崟, 缪小赟, 丁家安, 田鹏程, 倪才方. 锥形束计算机断层扫描在肝癌介入诊疗中的应用进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(03): 256-260.
[15] 罗汐, 田伟, 孙汉垚, 路尚于, 施海彬. 铁铜基纳米材料在肝癌微波增敏治疗中的应用效果[J/OL]. 中华介入放射学电子杂志, 2024, 12(01): 51-57.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?