切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 140 -145. doi: 10.3877/cma.j.issn.2095-5782.2023.02.008

基础研究

基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究
蔡泽宇1, 兰慧敏2, 于婷2, 罗慧2,()   
  1. 1. 519000 广东珠海,中山大学附属第五医院放射科
    2. 广东省分子影像工程技术研究中心;中山大学附属第五医院分子影像中心
  • 收稿日期:2023-03-06 出版日期:2023-05-25
  • 通信作者: 罗慧
  • 基金资助:
    广东省基础与应用基础研究基金项目(2022A1515012482)

The study based on Ti3C2 loaded with doxorubicin and combined with photothermal therapy for inhibiting the proliferation of breast cancer cells

Zeyu Cai1, Huimin Lan2, Ting Yu2, Hui Luo2,()   

  1. 1. Department of Radiology, the Fifth Affiliated Hospital of Sun Yat-sen University
    2. Guangdong Provincial Engineering Research Center of Molecular Imaging; Department of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong Zhuhai 519000, China
  • Received:2023-03-06 Published:2023-05-25
  • Corresponding author: Hui Luo
引用本文:

蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.

Zeyu Cai, Huimin Lan, Ting Yu, Hui Luo. The study based on Ti3C2 loaded with doxorubicin and combined with photothermal therapy for inhibiting the proliferation of breast cancer cells[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2023, 11(02): 140-145.

目的

本研究基于Ti3C2二维纳米片装载阿霉素(doxorubicin,DOX)并包裹CaCO3以制备新型复合纳米药物Ti3C2/DOX@CaCO3,旨在增加药物在肿瘤部位的积聚,同时联合光热治疗增强乳腺癌的治疗效果,并减少DOX的毒副作用。

方法

以环己烷、Triton X-100、1-己醇、氯化钙溶液和碳酸钠溶液为原料制备Ti3C2/DOX@CaCO3。采用CCK8实验检测Ti3C2/DOX@CaCO3及联合光热治疗后对乳腺癌细胞MDA-MB-231增殖能力的影响。随后通过构建MDA-MB-231乳腺癌裸鼠皮下瘤模型,评估Ti3C2/DOX@CaCO3联合光热治疗后对肿瘤生长的抑制效果以及生物安全性。

结果

Zeta电位显示Ti3C2成功负载DOX。CCK8实验结果表明,与单纯DOX处理组相比,Ti3C2/DOX@CaCO3联合光热治疗后能更好地抑制乳腺癌细胞MDA-MB-231的增殖。同时体内实验证实,Ti3C2/DOX@CaCO3联合光热治疗组相较单纯注射Ti3C2/DOX@CaCO3组能更有效地抑制小鼠皮下肿瘤的生长,HE结果显示其他脏器未出现明显的形态改变和病理损伤。

结论

上述研究结果证实,通过Ti3C2二维纳米片递送化疗药物DOX同时联合光热治疗能够有效抑制乳腺癌细胞的生长,减少DOX对机体的毒副作用。这也为临床治疗乳腺癌提供了一种新型的治疗策略,在改善乳腺癌治疗疗效方面具有积极的临床应用前景。

Objective

This study uses Ti3C2 nanosheets loading doxorubicin (DOX) and CaCO3 to prepare a novel nano-composite Ti3C2/DOX@CaCO3 for drug delivery, aiming to increase the accumulation of drugs at the site of tumors, enhance the therapeutic effect of breast cancer combined with photothermal therapy, and reduce the toxicity of DOX.

Methods

Ti3C2/DOX@CaCO3 was prepared from Ti3C2, cyclohexane, Triton X-100, 1-hexanol, calcium chloride solution and sodium carbonate solution. CCK8 assay was used to detect the effect of Ti3C2/DOX@CaCO3 combined with photothermal therapy on the proliferative ability of MDA-MB-231 cells. Subsequently, we established MDA-MB-231 tumor burden animal model. The toxicity of Ti3C2/DOX@CaCO3 combined with photothermal therapy and the inhibitory effect of tumor growth in MDA-MB-231 breast cancer were evaluated by animal experiments.

Results

Zeta potential showed Ti3C2 loading DOX successfully.The CCK8 experiment confirmed that Ti3C2/DOX@CaCO3 combined with photothermal therapy could better inhibit the proliferation of MDA-MB-231 cells compared with the DOX group. In vivo experiments, the results confirmed that Ti3C2/DOX@CaCO3 nanocomposites combined with photothermal therapy could more effectively inhibit the growth of subcutaneous tumors in mice. Moreover, there were no other obvious morphological changes or pathological damage in other organs.

Conclusions

This study has confirmed that the Ti3C2 two-dimensional nanosheets loading chemotherapeutic drugs DOX and Ca2+, combined with photothermal therapy can effectively inhibit the growth of breast cancer cells, and reduce the toxicity of DOX. This also provides a new synergistic strategy for breast cancer treatment, which has a promising clinical application prospects.

图1 Ti3C2及Ti3C2/DOX@CaCO3形貌及电位1A:Ti3C2透射电镜图像,比例尺:0.5 μm;1B:游离DOX、Ti3C2、Ti3C2/DOX及Ti3C2/DOX@CaCO3的Zeta电位,n = 3,数据采用平均值±标准差。
图2 Ti3C2/DOX@CaCO3联合光热治疗对MDA-MB-231细胞增殖活性的影响2A:特定浓度下MDA-MB-231细胞分别与游离DOX和Ti3C2/DOX@CaCO3共同孵育24 h后的细胞活性情况;2B:特定浓度下MDA-MB-231细胞分别与游离DOX和Ti3C2/DOX@CaCO3共同孵育48 h后的细胞活性情况;2C:MDA-MB-231细胞在不同治疗后细胞活性情况。n = 3,数据采用平均值±标准差;经one-way ANOVA分析,***代表P < 0.001,****表示P < 0.000 1。
图3 Ti3C2/DOX@CaCO3及联合光热治疗对体内抗肿瘤效果分析3A:不同组别荷瘤老鼠治疗结束后肿瘤图片;3B:不同组别荷瘤老鼠的平均肿瘤生长曲线;3C:不同组别荷瘤老鼠结束治疗后的肿瘤重量对比柱形图;3D:不同组别荷瘤老鼠的平均体重变化曲线。n = 3,数据采用平均值±标准差,*代表P < 0.05,***代表P < 0.001。
图4 荷瘤老鼠治疗后各器官(心、肝、脾、肺、肾)HE染色
[1]
Global breast cancer initiative implementation framework: assessing, strengthening and scaling-up of services for the early detection and management of breast cancer. Executive summary. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.
[2]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[3]
Avazzadeh R, Vasheghani-Farahani E, Soleimani M, et al. Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia[J]. Prog Biomater, 2017, 6: 75-84.
[4]
Burstein HJ, Curigliano G, Loibl S, et al. Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen international consensus guidelines for the primary therapy of early breast cancer 2019[J]. Ann Oncol, 2019, 30(10): 1541-1557.
[5]
Bootman MD, Bultynck G. Fundamentals of cellular calcium signaling: a primer[J]. Cold Spring Harb Perspect Biol, 2020, 12(1): a038802.
[6]
Liu H, Yi P, Zhao W, et al. Illuminating the allosteric modulation of the calcium-sensing receptor[J]. Proc Natl Acad Sci USA, 2020, 117(35): 21711-21722.
[7]
Viereckl M, Alojibaily N, Hydock D, et al. The role of creatine supplementation in alleviating doxorubicin induced hepatotoxicity[J]. 2020 Undergraduate Presentations. 42.

URL    
[8]
Cagel M, Grotz E, Bernabeu E, et al. Doxorubicin: nanotechnological overviews from bench to bedside[J]. Drug Discov Today, 2017, 22(2): 270-281.
[9]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects[J].J Nanobiotechnology, 2018, 16(1): 1-33.
[10]
Gan J, Li F, Tang Y, et al. Theoretical study of transition‐metal‐modified Mo2CO2 MXene as a catalyst for the hydrogen evolution reaction[J]. ChemSusChem, 2020, 13(22): 6005-6015.
[11]
Feng A, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2[J]. Mater Des, 2017, 114:161-166.
[12]
Peng Q, Guo J, Zhang Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide[J]. J Am Chem Soc, 2014, 136(11): 4113-4116.
[13]
Ibragimova R, Erhart P, Rinke P, et al. Surface functionalization of 2D MXenes: trends in distribution, composition, and electronic properties[J]. J Phys Chem Lett, 2021, 12(9): 2377-2384.
[14]
Zhou C, Chen T, Wu C, et al. Aptamer CaCO3 nanostructures: a facile, pH‐responsive, specific platform for targeted anticancer theranostics[J]. Chem Asian J, 2015, 10(1): 166-171.
[15]
Liu J, Zhu C, Xu L, et al. Nanoenabled intracellular calcium bursting for safe and efficient reversal of drug resistance in tumor cells[J]. Nano Lett, 2020, 20(11): 8102-8111.
[16]
Wang J, Liu J, Liu Y, et al. Gd-Hybridized Plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy[J]. Adv Mater, 2016, 28(40): 8950-8958.
[17]
Liu G, Zou J, Tang Q, et al. Surface modified Ti3C2MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy[J]. ACS Appl Mater Interfaces, 2017, 9(46): 40077-40086.
[1] 万莉, 唐芮, 操雨婷, 程晨, 林晓红, 蒋琴琴, 胡中倩, 李攀. pH响应型纳米探针用于超声/光声成像引导下的乳腺癌光热治疗[J]. 中华医学超声杂志(电子版), 2022, 19(05): 459-466.
[2] 郑永红, 蔡思媛, 项国剑, 黄海建, 叶志强, 张建成. β3肾上腺素能受体在慢性心力衰竭大鼠中高表达及可能机制[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 107-112.
[3] 贾卫娟, 张崇建, 周婕, 苏逢锡. 高剂量表阿霉素联合环磷酰胺和氟尿嘧啶治疗乳腺癌的临床研究[J]. 中华普通外科学文献(电子版), 2011, 05(04): 289-293.
[4] 哈斯高娃, 曹中朝, 刘东华. 硫化氢通过调控SIRT1抑制阿霉素诱导的H9c2细胞损伤[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(04): 218-223.
[5] 张睿, 崔乐. IL-12重组质粒联合骨髓间充质干细胞对MCF-7人乳腺癌细胞侵袭及裸鼠移植瘤生长的影响分析[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(03): 140-145.
[6] 邹杰锋, 许云鹏, 张燕子, 隋晓露, 袁树珍, 曾启城, 李丽香, 谢婷妃, 徐子斌, 陈继红. JAK2/STAT3信号通路在局灶节段性肾小球硬化足细胞损伤中的作用及机制[J]. 中华临床医师杂志(电子版), 2021, 15(09): 683-690.
[7] 唐柯馨, 林熙, 单鸿. 经聚乙烯亚胺钝化的荧光碳点负载阿霉素抑制非小细胞肺癌细胞增殖、迁移侵袭的治疗研究[J]. 中华介入放射学电子杂志, 2022, 10(02): 131-136.
阅读次数
全文


摘要