[1] |
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review[J]. Advanced Materials, 2015, 27(7): 1143-1169.
|
[2] |
Wu Z, Li Q, Xie S, et al. In vitro and in vivo biocompatibility evaluation of a 3d bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110530.
|
[3] |
Chen P, Chen X, Mo, J, et al. Interpenetrating polymer network scaffold of sodium hyaluronate and sodium alginate combined with berberine for osteochondral defect regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2018, 91: 190-200.
|
[4] |
Xu F, Xu L, Wang Q, et al. 3D dynamic culture of rabbit articular chondrocytes encapsulated in alginate gel beads using spinner flasks for cartilage tissue regeneration[J]. Biomed Research International, 2014: 539789.
|
[5] |
Liu T, Yi S, Liu G, et al. Aqueous two-phase emulsions-templated tailorable porous alginate beads for 3d cell culture[J]. Carbohydrate Polymers, 2021, 258(10): 117702.
|
[6] |
Shen B, Li J, Wang X, et al. Impact of different proportions of 2d and 3d scaffolds on the proliferation and differentiation of human adipose-derived stem cells[J]. J Oral Maxillofac Surg, 2021, 79(7): 1580. e1-1580. e11.
|
[7] |
Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution[J]. Biomaterials, 2005, 26(15): 2455-2465.
|
[8] |
Emami Z, Ehsani M, Zandi M, et al. Controlling alginate oxidation conditions for making alginate-gelatin hydrogels[J]. Carbohydrate Polymers, 2018, 198: 509-517.
|
[9] |
Kong X, Chen L, Li B, et al. Applications of oxidized alginate in regenerative medicine[J]. J Mater Chem B, 2021, 9(12): 2785-2801.
|
[10] |
Shi C, Hou X, Zhao K, et al. Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials[J]. J Mech Behav Biomed Mater, 2022, 126: 105062.
|
[11] |
Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications:a review[J]. Biomacromolecules, 2018, 19(1): 3-21.
|
[12] |
Cai K, Zhang J, Deng L, et al. Physical and biological properties of a novel hydrogel composite based on oxidized alginate, gelatin and tricalcium phosphate for bone tissue engineering[J]. Advanced Engineering Materials, 2007, 9(12): 1082-1088.
|
[13] |
Park H, Lee KY. Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels[J]. J Biomed Mater Res A, 2014, 102(12): 4519-4525.
|
[14] |
Zhao Y, Duan W, Lu J, et al. In vivo and in vitro degradation of calcium alginate beads combined with chondrocytes[J]. Orthopedic Journal of China, 2016, 24(12): 1101-1106.
|
[15] |
Tripathi G, Miyazaki T. Fabrication and properties of alginate/calcium phosphate hybrid beads: a comparative study[J]. Biomed Mater Eng, 2021, 32(1): 15-27.
|
[16] |
Yang B, Yao F, Ye L, et al. A conductive pedot/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells[J]. Biomater Sci,2020, 8(11): 3173-3185.
|
[17] |
Yuan Y, Xu X, Gong J, et al. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery[J]. Int J Biol Macromol, 2019, 131: 209-217.
|
[18] |
Shivakumara LR, Demappa T. Synthesis and swelling behavior of sodium alginate/poly(vinyl alcohol) hydrogels[J]. Turk J Pharm Sci, 2019, 16(3): 252-260.
|
[19] |
Mohammed A, Rivers A, Stuckey DC, et al. Alginate extraction from sargassum seaweed in the caribbean region: optimization using response surface methodology[J]. Carbohydr Polym, 2020, 245: 116419.
|
[20] |
Trica B, Delattre C, Gros F, et al. Extraction and characterization of alginate from an edible brown seaweed (cystoseira barbata) harvested in the romanian back Sea[J]. Mar Drugs, 2019, 17(7): 405.
|
[21] |
Khajouei RA, Keramat J, Hamdami N, et al. Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini[J]. Int J Biol Macromol, 2018, 118(Pt A): 1073-1081.
|
[22] |
Zhang H, Cheng J, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine[J]. Mar Drugs, 2021, 19(5): 264.
|
[23] |
Alvarez-Berrios MP, Aponte-Reyes LM, Diaz-Figueroa L, et al. Preparation and in vitro evaluation of alginate microparticles containing amphotericin b for the treatment of candida infections[J]. International Journal of Biomaterials, 2020, 2020(13): 1-12.
|
[24] |
Li X, Wu Z, He Y, et al.Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198[J]. J Biomater Sci Polym Ed, 2017, 28(14): 1556-1571.
|
[25] |
Sadeghi D, Solouk A, Samadikuchaksaraei A, et al. Preparation of internally-crosslinked alginate microspheres: optimization of process parameters and study of ph-responsive behaviors- sciencedirect[J]. Carbohydrate Polymers, 2021, 255: 117336.
|
[26] |
Mokhtari S, Jafari SM. Assadpour E.Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate[J]. Food Chemistry, 2017, 229: 286-295.
|
[27] |
Uyen N, Hamid Z, Tram N, et al. Fabrication of alginate microspheres for drug delivery: a review[J]. International Journal of Biological Macromolecules, 2020, 153: 1035-1046.
|
[28] |
Zhang C, Grossier R, Candoni N, et al. Preparation of alginate hydrogel microparticles using droplet-based microfluidics: a review of methods[J]. Biomater Res, 2021, 25(1): 41.
|
[29] |
Zhang Y, Bai Y, Chen H, et al. Preparation of a colon-specific sustained-release capsule with curcumin-loaded smedds alginate beads[J]. RSC Advances, 2017, 7(36): 22280-22285.
|
[30] |
Belak-Cvitanovi A, Stojanovi R, Manojlovi V, et al. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate-chitosan system enhanced with ascorbic acid by electrostatic extrusion[J]. Food Research International, 2011, 44(4): 1094-1101.
|
[31] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
[32] |
Chen G, Wei R, Huang X, et al. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent[J]. Int J Biol Macromol, 2020, 155: 1450-1459.
|
[33] |
Fu C, He F, Tan L, et al. MoS2 nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy[J]. Nanoscale, 2017, 9(39): 14846-14853.
|
[34] |
顾朋, 叶尔麦克·阿哈提, 樊喜文. 原发性肝癌TACE治疗栓塞剂对疗效和预后影响[J]. 中华肿瘤防治杂志, 2018, 25(23): 1658-1663.
|
[35] |
Lei C, Xiang Y, Ao G, et al. Impact of uterine fibroid embolization with danazol alginate microsphere on ovarian function and subsequent pregnancy[J]. Zhonghua Fu Chan Ke Za Zhi, 2007, 42(10): 701-704.
|
[36] |
谭国忠, 涂欣冉, 郭黎洋, 等. 3D打印明胶/海藻酸钠/58S生物玻璃骨缺损修复支架的生物安全性评价[J]. 中国组织工程研究, 2022, 26(4): 521-527.
|
[37] |
Rong J, Liang M, Xuan F, et al. Alginate-calcium microsphere loaded with thrombin: a new composite biomaterial for hemostatic embolization[J]. Int J Biol Macromol, 2015, 75: 479-488.
|
[38] |
Rong J, Liang M, Xuan F, et al. Thrombin-loaded alginate-calcium microspheres: a novel hemostatic embolic material for transcatheter arterial embolization[J]. Int J Biol Macromol, 2017, 104(Pt A): 1302-1312.
|
[39] |
刘亚斌, 梁明, 吕国军, 等. 应用海藻酸钠微球栓塞治疗肝动脉破裂的实验研究[J]. 医学研究生学报, 2013, 26(3): 248-250.
|
[40] |
黄沁, 田媛, 敖国昆, 等. 海藻酸钠微球与明胶海绵栓塞肺结核大咯血的效果比较: 143例分析[J]. 中国组织工程研究与临床康复, 2010, 14(42): 7959-7962.
|
[41] |
Huang D, Huang J, Yang Y, et al. Clinical application of kelp micro gelation (kmg) in partial splenic embolization[J]. Eur Rev Med Pharmacol Sci, 2018, 22(6): 1776-1781.
|
[42] |
Duan P, Cheng J, Lin M, et al. Intermediate and long term clinical effects of uterine arterial embolization with sodium alginate microspheres in treatment of diffuse adenomyosis[J]. Zhonghua Fu Chan Ke Za Zhi, 2008, 43(4): 272-275.
|
[43] |
Yoncheva K, Merino M, Shenol A, et al. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model[J]. Int J Pharm, 2019, 556:1-8.
|
[44] |
Majeed A, Hwang HG, Eikelboom JW, et al. Effectiveness and outcome of management strategies for dabigatran- or warfarin related major bleeding events[J]. Thromb Res, 2016, 140: 81-88.
|