切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2022, Vol. 10 ›› Issue (02) : 202 -208. doi: 10.3877/cma.j.issn.2095-5782.2022.02.014

综述

海藻酸盐微球栓塞剂的制备及应用进展
魏胜超1, 邓堂1, 廖勇1, 钟士杰1, 史键山1, 金桂云1,(), 王剑锋2,()   
  1. 1. 570100 海南海口,海南医学院第一附属医院介入血管外科
    2. 100020 北京,首都医科大学附属北京朝阳医院介入放射科
  • 收稿日期:2022-02-17 出版日期:2022-05-25
  • 通信作者: 金桂云, 王剑锋
  • 基金资助:
    海南省自然科学基金(820RC764)

Progress in the preparation and application of alginate microsphere embolic agents

Shengchao Wei1, Tang Deng1, Yong Liao1, Shijie Zhong1, Jianshan Shi1, Guiyun Jin1,(), Jianfeng Wang2,()   

  1. 1. Department of Interventional Vascular Surgery, the First Affiliated Hospital of Hainan Medical College, Hainan Haikou 570100
    2. Department of Interventional Radiology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
  • Received:2022-02-17 Published:2022-05-25
  • Corresponding author: Guiyun Jin, Jianfeng Wang
引用本文:

魏胜超, 邓堂, 廖勇, 钟士杰, 史键山, 金桂云, 王剑锋. 海藻酸盐微球栓塞剂的制备及应用进展[J]. 中华介入放射学电子杂志, 2022, 10(02): 202-208.

Shengchao Wei, Tang Deng, Yong Liao, Shijie Zhong, Jianshan Shi, Guiyun Jin, Jianfeng Wang. Progress in the preparation and application of alginate microsphere embolic agents[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2022, 10(02): 202-208.

海藻酸盐是一种线性阴离子多糖碳水化合物,是海藻酸衍生物中的一种,具有生物相容性、生物降解性、黏附性、溶胀性等特性,并且相对廉价、容易获取,被氧化后可通过乳液-溶剂挥发法、滴制法、喷雾干燥法、静电法制备成海藻酸盐微球,被广泛应用于介入栓塞治疗,如良恶性肿瘤的治疗、出血性疾病的治疗以及其他疾病的治疗。文章结合国内外的最新研究介绍海藻酸盐的性质、制备及作为栓塞材料的应用进展,并提出进一步的研究设想。

Alginate is a kind of linear anionic polysaccharide carbohydrate, one of the alginate derivatives, with biocompatibility, biodegradability, adhesion, swelling and other properties. It is relatively cheap and easy to obtain, so it is widely used in interventional embolization therapy, such as the treatment of benign and malignant tumors, the treatment of hemorrhagic diseases and other diseases. In this paper, the properties, preparation and application of alginate as embolization materials are introduced, and ideas for future investigations are proposed.

图1 海藻酸盐的分子结构[1]
[1]
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review[J]. Advanced Materials, 2015, 27(7): 1143-1169.
[2]
Wu Z, Li Q, Xie S, et al. In vitro and in vivo biocompatibility evaluation of a 3d bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110530.
[3]
Chen P, Chen X, Mo, J, et al. Interpenetrating polymer network scaffold of sodium hyaluronate and sodium alginate combined with berberine for osteochondral defect regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2018, 91: 190-200.
[4]
Xu F, Xu L, Wang Q, et al. 3D dynamic culture of rabbit articular chondrocytes encapsulated in alginate gel beads using spinner flasks for cartilage tissue regeneration[J]. Biomed Research International, 2014: 539789.
[5]
Liu T, Yi S, Liu G, et al. Aqueous two-phase emulsions-templated tailorable porous alginate beads for 3d cell culture[J]. Carbohydrate Polymers, 2021, 258(10): 117702.
[6]
Shen B, Li J, Wang X, et al. Impact of different proportions of 2d and 3d scaffolds on the proliferation and differentiation of human adipose-derived stem cells[J]. J Oral Maxillofac Surg, 2021, 79(7): 1580. e1-1580. e11.
[7]
Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution[J]. Biomaterials, 2005, 26(15): 2455-2465.
[8]
Emami Z, Ehsani M, Zandi M, et al. Controlling alginate oxidation conditions for making alginate-gelatin hydrogels[J]. Carbohydrate Polymers, 2018, 198: 509-517.
[9]
Kong X, Chen L, Li B, et al. Applications of oxidized alginate in regenerative medicine[J]. J Mater Chem B, 2021, 9(12): 2785-2801.
[10]
Shi C, Hou X, Zhao K, et al. Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials[J]. J Mech Behav Biomed Mater, 2022, 126: 105062.
[11]
Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications:a review[J]. Biomacromolecules, 2018, 19(1): 3-21.
[12]
Cai K, Zhang J, Deng L, et al. Physical and biological properties of a novel hydrogel composite based on oxidized alginate, gelatin and tricalcium phosphate for bone tissue engineering[J]. Advanced Engineering Materials, 2007, 9(12): 1082-1088.
[13]
Park H, Lee KY. Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels[J]. J Biomed Mater Res A, 2014, 102(12): 4519-4525.
[14]
Zhao Y, Duan W, Lu J, et al. In vivo and in vitro degradation of calcium alginate beads combined with chondrocytes[J]. Orthopedic Journal of China, 2016, 24(12): 1101-1106.
[15]
Tripathi G, Miyazaki T. Fabrication and properties of alginate/calcium phosphate hybrid beads: a comparative study[J]. Biomed Mater Eng, 2021, 32(1): 15-27.
[16]
Yang B, Yao F, Ye L, et al. A conductive pedot/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells[J]. Biomater Sci,2020, 8(11): 3173-3185.
[17]
Yuan Y, Xu X, Gong J, et al. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery[J]. Int J Biol Macromol, 2019, 131: 209-217.
[18]
Shivakumara LR, Demappa T. Synthesis and swelling behavior of sodium alginate/poly(vinyl alcohol) hydrogels[J]. Turk J Pharm Sci, 2019, 16(3): 252-260.
[19]
Mohammed A, Rivers A, Stuckey DC, et al. Alginate extraction from sargassum seaweed in the caribbean region: optimization using response surface methodology[J]. Carbohydr Polym, 2020, 245: 116419.
[20]
Trica B, Delattre C, Gros F, et al. Extraction and characterization of alginate from an edible brown seaweed (cystoseira barbata) harvested in the romanian back Sea[J]. Mar Drugs, 2019, 17(7): 405.
[21]
Khajouei RA, Keramat J, Hamdami N, et al. Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini[J]. Int J Biol Macromol, 2018, 118(Pt A): 1073-1081.
[22]
Zhang H, Cheng J, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine[J]. Mar Drugs, 2021, 19(5): 264.
[23]
Alvarez-Berrios MP, Aponte-Reyes LM, Diaz-Figueroa L, et al. Preparation and in vitro evaluation of alginate microparticles containing amphotericin b for the treatment of candida infections[J]. International Journal of Biomaterials, 2020, 2020(13): 1-12.
[24]
Li X, Wu Z, He Y, et al.Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198[J]. J Biomater Sci Polym Ed, 2017, 28(14): 1556-1571.
[25]
Sadeghi D, Solouk A, Samadikuchaksaraei A, et al. Preparation of internally-crosslinked alginate microspheres: optimization of process parameters and study of ph-responsive behaviors- sciencedirect[J]. Carbohydrate Polymers, 2021, 255: 117336.
[26]
Mokhtari S, Jafari SM. Assadpour E.Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate[J]. Food Chemistry, 2017, 229: 286-295.
[27]
Uyen N, Hamid Z, Tram N, et al. Fabrication of alginate microspheres for drug delivery: a review[J]. International Journal of Biological Macromolecules, 2020, 153: 1035-1046.
[28]
Zhang C, Grossier R, Candoni N, et al. Preparation of alginate hydrogel microparticles using droplet-based microfluidics: a review of methods[J]. Biomater Res, 2021, 25(1): 41.
[29]
Zhang Y, Bai Y, Chen H, et al. Preparation of a colon-specific sustained-release capsule with curcumin-loaded smedds alginate beads[J]. RSC Advances, 2017, 7(36): 22280-22285.
[30]
Belak-Cvitanovi A, Stojanovi R, Manojlovi V, et al. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate-chitosan system enhanced with ascorbic acid by electrostatic extrusion[J]. Food Research International, 2011, 44(4): 1094-1101.
[31]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[32]
Chen G, Wei R, Huang X, et al. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent[J]. Int J Biol Macromol, 2020, 155: 1450-1459.
[33]
Fu C, He F, Tan L, et al. MoS2 nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy[J]. Nanoscale, 2017, 9(39): 14846-14853.
[34]
顾朋, 叶尔麦克·阿哈提, 樊喜文. 原发性肝癌TACE治疗栓塞剂对疗效和预后影响[J]. 中华肿瘤防治杂志, 2018, 25(23): 1658-1663.
[35]
Lei C, Xiang Y, Ao G, et al. Impact of uterine fibroid embolization with danazol alginate microsphere on ovarian function and subsequent pregnancy[J]. Zhonghua Fu Chan Ke Za Zhi, 2007, 42(10): 701-704.
[36]
谭国忠, 涂欣冉, 郭黎洋, 等. 3D打印明胶/海藻酸钠/58S生物玻璃骨缺损修复支架的生物安全性评价[J]. 中国组织工程研究, 2022, 26(4): 521-527.
[37]
Rong J, Liang M, Xuan F, et al. Alginate-calcium microsphere loaded with thrombin: a new composite biomaterial for hemostatic embolization[J]. Int J Biol Macromol, 2015, 75: 479-488.
[38]
Rong J, Liang M, Xuan F, et al. Thrombin-loaded alginate-calcium microspheres: a novel hemostatic embolic material for transcatheter arterial embolization[J]. Int J Biol Macromol, 2017, 104(Pt A): 1302-1312.
[39]
刘亚斌, 梁明, 吕国军, 等. 应用海藻酸钠微球栓塞治疗肝动脉破裂的实验研究[J]. 医学研究生学报, 2013, 26(3): 248-250.
[40]
黄沁, 田媛, 敖国昆, 等. 海藻酸钠微球与明胶海绵栓塞肺结核大咯血的效果比较: 143例分析[J]. 中国组织工程研究与临床康复, 2010, 14(42): 7959-7962.
[41]
Huang D, Huang J, Yang Y, et al. Clinical application of kelp micro gelation (kmg) in partial splenic embolization[J]. Eur Rev Med Pharmacol Sci, 2018, 22(6): 1776-1781.
[42]
Duan P, Cheng J, Lin M, et al. Intermediate and long term clinical effects of uterine arterial embolization with sodium alginate microspheres in treatment of diffuse adenomyosis[J]. Zhonghua Fu Chan Ke Za Zhi, 2008, 43(4): 272-275.
[43]
Yoncheva K, Merino M, Shenol A, et al. Optimization and in-vitro/in-vivo evaluation of doxorubicin-loaded chitosan-alginate nanoparticles using a melanoma mouse model[J]. Int J Pharm, 2019, 556:1-8.
[44]
Majeed A, Hwang HG, Eikelboom JW, et al. Effectiveness and outcome of management strategies for dabigatran- or warfarin related major bleeding events[J]. Thromb Res, 2016, 140: 81-88.
[1] 许可, 宁刚. 不同栓塞剂对子宫动脉化疗栓塞术联合超声引导下清宫术治疗剖宫产瘢痕妊娠患者的出血量影响[J]. 中华妇幼临床医学杂志(电子版), 2019, 15(05): 520-526.
[2] 刘唯佳, 赵泳冰, 李新哲, 徐征国, 陶玥颖. 食管癌致咯血救治成功一例报告[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 292-294.
[3] 曹耿飞, 张海潇, 顾俊鹏, 朱帝文, 鲍应军, 阿斯哈尔·哈斯木, 任伟新. 载药微球栓塞联合索拉非尼治疗不可切除肝癌安全性和疗效[J]. 中华肝脏外科手术学电子杂志, 2021, 10(01): 43-47.
[4] 张发林, 雍昉. 应用空白微球行TACE治疗肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2020, 09(04): 339-342.
[5] 王晓玉, 胡豪飞, 韦宁荣, 毕慧欣. 特发性膜性肾病患者血清β2微球蛋白与局灶节段性肾小球硬化病变的关系分析[J]. 中华肾病研究电子杂志, 2022, 11(05): 249-257.
[6] 刘夕瑶, 毛菲菲, 李丹, 鲁丹, 王胜男, 孙挥宇. 房水病毒载量和细胞因子检测在急性视网膜坏死诊断与治疗中应用的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(02): 76-81.
[7] 苏道庆, 郭文昌, 周光华, 惠浴祚, 祝秋实, 刘怀新, 李广峰, 张士刚. 经皮微球囊压迫术中球囊破裂一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 189-190.
[8] 苏道庆, 郭文昌, 周光华, 惠浴祚, 刘怀新, 李广峰, 张士刚. 经皮穿刺微球囊压迫术治疗丛集性头痛一例报道并文献复习[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 187-188.
[9] 尹松林, 蒲蓉, 麦超, 牟天易. 血氨、血乳酸、β2-微球蛋白在急诊感染致脓毒症患者预后预测中的价值分析[J]. 中华临床医师杂志(电子版), 2022, 16(06): 507-512.
[10] 曾嘉, 何东风. 介入栓塞材料在肝癌治疗中的研究进展[J]. 中华介入放射学电子杂志, 2023, 11(01): 62-67.
[11] 唐水杉, 曹耿飞, 薛巧云, 张海潇, 任伟新. 药物缓释微球TACE对比传统碘油TACE治疗不可切除肝癌:倾向性评分匹配[J]. 中华介入放射学电子杂志, 2022, 10(01): 39-44.
[12] 魏楠, 黄学卿, 王黎洲, 蒋天鹏, 许国辉, 周石. 先天性肺动静脉畸形合并腹部外伤发生迟发性消化道出血一例[J]. 中华介入放射学电子杂志, 2021, 09(04): 461-464.
[13] 李臻, 纪坤, 王彩鸿, 宋丽杰, 李鑫, 詹鹏超, 石洋, 韩新巍. DEB-TACE治疗神经内分泌肿瘤肝转移的疗效初探[J]. 中华介入放射学电子杂志, 2021, 09(01): 25-30.
[14] 张晓, 查婧, 管竹春, 周凯. 海藻酸钠微球与碘化油经导管动脉化疗栓塞术治疗原发性肝癌疗效的Meta分析[J]. 中华介入放射学电子杂志, 2021, 09(01): 57-64.
[15] 刘松, 李强, 于广计, 王庆东. CalliSpheres载药微球治疗老年肺鳞状细胞癌疗效分析[J]. 中华老年病研究电子杂志, 2020, 07(03): 12-16.
阅读次数
全文


摘要