切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2021, Vol. 09 ›› Issue (04) : 415 -418. doi: 10.3877/cma.j.issn.2095-5782.2021.04.012

基础研究

Tie2突变与儿童静脉畸形相关性研究
徐文婵1, 刘珍银2, 陈钦谕2, 张靖3,()   
  1. 1. 510623 广东广州,广州市妇女儿童医疗中心放射科
    2. 510623 广东广州,广州市妇女儿童医疗中心介入&血管瘤科
    3. 510080 广东广州,广东省人民医院(广东省医学科学院)介入治疗科
  • 收稿日期:2021-04-30 出版日期:2021-11-25
  • 通信作者: 张靖
  • 基金资助:
    广州市妇女儿童医疗中心院内基金(IP-2019-015)

Analysis of clinical effect and influencing factors of interventional sclero-therapy for venous malformation in children

Wenchan Xu1, Zhenyin Liu2, Qinyu Chen2, Jing Zhang3,()   

  1. 1. Department of Radiology, Guangzhou Women and Children's Medical Center, Guangdong Guangzhou 510623
    2. Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangdong Guangzhou 510623
    3. Department of Interventional Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Guangzhou 510080, China
  • Received:2021-04-30 Published:2021-11-25
  • Corresponding author: Jing Zhang
引用本文:

徐文婵, 刘珍银, 陈钦谕, 张靖. Tie2突变与儿童静脉畸形相关性研究[J]. 中华介入放射学电子杂志, 2021, 09(04): 415-418.

Wenchan Xu, Zhenyin Liu, Qinyu Chen, Jing Zhang. Analysis of clinical effect and influencing factors of interventional sclero-therapy for venous malformation in children[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2021, 09(04): 415-418.

目的

研究Tie2突变与儿童静脉畸形相关性,初步探讨静脉畸形的发病机制。

方法

收集56例散发性静脉畸形(VM)患儿外周静脉血(VM病例组)与30例正常健康人(健康对照组)的血液正常对照,提取DNA,运用直接测序法对Tie2的13号外显子进行测序,将所得序列用Chromas软件进行分析,在NCBI网站与已知序列进行比对。

结果

本次试验纳入的30例正常人血液标本中检测Tie2基因的13号外显子突变率为3.3%(1/30),56例VM病例组突变率为57.1%(32/56),两组间突变率差异具有统计学意义,而VM病例组内性别、首发年龄、病灶部位的突变率差异无统计学意义。

结论

Tie2 13号外显子在静脉畸形中突变率显著升高(57.1%),针对Tie2 13号外显子突变的分子治疗为标准治疗方法不敏感的难治性VM提供了新思路。

Objective

To study the correlation between Tie2 mutation and venous malformations in children, and to explore the pathogenesis of venous malformations.

Methods

The peripheral venous blood of 56 children with sporadic venous malformations was collected and compared with the normal blood of healthy people. DNA was extracted and exon 13 of Tie 2 was sequenced by direct sequencing.

Results

The mutation rate of exon 13 of Tie2 gene was 3.3% (1/30) in 30 normal blood samples and 57.1% (32/56) in VM patients. There were significant statistical differences in the mutation rate between the two groups, while there were no statistical differences in gender, age of first onset and lesion site within the case group.

Conclusions

The mutation rate of exon 13 of Tie2 was significantly increased in venous malformation (57.1%). Molecular therapy targeting exon 13 mutations of Tie2 provides a new idea for refractory VMs that are insensitive to standard therapy.

表1 PCR反应体系
图1 PCR扩增条件流程
表2 56例病例样本—VMs的临床特征以及Tie2基因13号外显子突变结果
表3 VMs组内突变率的比较
表4 VM病例组与健康对照组间突变率的比较
[1]
张红宇. 周围静脉畸形的诊断、分型与治疗[D]. 郑州大学, 2016.
[2]
Buckmiller LM, Richter GT, Suen JY. Diagnosis and management of hemangiomas and vascular malformations of the head and neck[J]. Oral Diseases, 2010, 16(5): 405-418.
[3]
Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche[J]. Cell, 2004, 118(2): 149-161.
[4]
Palma MD, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors[J]. Cancer Cell, 2005, 8(3): 211-226.
[5]
Vikkula M, Boon LM, Iii K, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase Tie2[J]. Cell, 1996, 87(7): 1181-1190.
[6]
Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations[J]. Nature Genetics, 2009, 41(1): 118-124.
[7]
Soblet J, Limaye N, Uebelhoer M, et al. Variable somatic Tie2 mutations in half of sporadic venous malformations[J]. Mol Syndromol, 2013, 4(4): 179-183.
[8]
Wouters V, Limaye N, Uebelhoer M, et al. Hereditary cutaneomucosal venous malformations are caused by Tie2 mutations with widely variable hyper-phosphorylating effects[J]. European Journal of Human Genetics, 2010, 18(4): 414-420.
[9]
Calvert JT, Riney TJ, Kontos CD, et al. Allelic and locus heterogeneity in inherited venous malformations[J]. Human Molecular Genetics, 1999(7): 1279-1289.
[10]
Augustin HG, Koh GY, Thurston G, et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system[J]. Nat Rev Mol Cell Biol, 2009, 10(3): 165-177.
[11]
Eklund L, Saharinen P. Angiopoietin signaling in the vasculature[J]. Exp Cell Res, 2013, 319(9): 1271-1280.
[12]
Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning[J]. Cell, 1997, 87(7): 1161-1169.
[13]
Dumont DJ, Yamaguchi TP, Conlon RA, et al. TEK, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors[J]. Oncogene, 1992, 7(8): 1471.
[14]
Sato TN, Qin Y, Kozak CA, et al.Tie-1 and Tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system[J]. Proc Natl Acad Sci U S A, 1993, 90(20): 9355-9358.
[15]
Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis[J]. Cell, 1996, 87(7): 1171-1180.
[16]
Dumont DJ, Gradwohl G, Fong GH, et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, TEK, reveal a critical role in vasculogenesis of the embryo[J]. Genes Dev, 1994, 8(16): 1897-1909.
[17]
Jeansson M, Gawlik A, Anderson G, et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury[J]. Journal of Clinical Investigation, 2011, 121(6): 2278-2289.
[18]
Ye C, Pan L, Huang Y, et al. Somatic mutations in exon 17 of the TEK gene in vascular tumors and vascular malformations[J]. Journal of Vascular Surgery, 2011, 54(6): 1760-1768.
[19]
Boscolo E, Limaye N, Huang L, et al. Rapamycin improves Tie2-mutated venous malformation in murine model and human subjects[J]. Journal of Clinical Investigation, 2015, 125(9): 3491-3504.
[1] 陈天阳, 诸炳骅, 姜春雷, 凌琪华, 方荣, 王倩. 肺泡灌洗液二代基因测序对成人重症肺炎病原学诊断及抗生素应用的临床意义[J]. 中华危重症医学杂志(电子版), 2022, 15(05): 379-382.
[2] 冯丹, 姜尔烈. 血液病患者侵袭性肺曲霉菌病研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 145-149.
[3] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[4] 刘权, 张绪新, 李彦钊, 邓东风. 疑似"高血压性基底节区脑出血"的脑动静脉畸形术后再出血一例报道[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 316-317.
[5] 魏云, 李晓东. 脑动静脉畸形合并颅内动脉瘤的手术治疗[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 382-383.
[6] 黎鹏程, 黄谦亦, 云德波, 范润金, 尚彬. 3D打印技术在脑动静脉畸形诊疗中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 121-124.
[7] 张靖, 王奇. 一例下颌骨动静脉畸形的栓塞治疗[J]. 中华介入放射学电子杂志, 2023, 11(04): 392-392.
[8] 中国血管瘤血管畸形联盟, 中国医师协会介入医师分会妇儿介入学组. 聚桂醇注射液治疗儿童静脉畸形中国专家共识[J]. 中华介入放射学电子杂志, 2022, 10(04): 349-354.
[9] 郭德华, 贺迎坤, 白卫星, 何艳艳, 李天晓. 脑动静脉畸形部分栓塞术后血管组织增殖与凋亡的变化[J]. 中华介入放射学电子杂志, 2022, 10(02): 152-157.
[10] 魏楠, 黄学卿, 王黎洲, 蒋天鹏, 许国辉, 周石. 先天性肺动静脉畸形合并腹部外伤发生迟发性消化道出血一例[J]. 中华介入放射学电子杂志, 2021, 09(04): 461-464.
[11] 左松, 董长宪, 肖莉, 王彦林, 郭晓楠, 任腾飞. 聚多卡醇泡沫硬化治疗儿童Puig'sⅠ型和Ⅱ型肛周静脉畸形临床研究[J]. 中华介入放射学电子杂志, 2021, 09(01): 41-44.
[12] 刘佩莹, 邓肖香, 林素玲, 贾永莉, 陈爱群, 张靖. 日间手术管理模式在儿童静脉畸形介入治疗中的应用及效果评价[J]. 中华介入放射学电子杂志, 2021, 09(01): 92-97.
[13] 李陆鹏, 曹广劭, 刘建文, 刘玉岩, 刘瑞青, 曹会存, 李天晓. 子宫动静脉畸形介入栓塞治疗19例临床研究[J]. 中华介入放射学电子杂志, 2020, 08(03): 237-239.
[14] 何荟, 陈琳, 杨泽萱, 叶楠, 奚级梅. 产前超声应用微血流灌注成像技术诊断胎儿下腔静脉畸形的价值[J]. 中华诊断学电子杂志, 2022, 10(04): 253-258.
[15] 徐斌. 颅内动静脉畸形的联合治疗[J]. 中华脑血管病杂志(电子版), 2020, 14(05): 315-315.
阅读次数
全文


摘要