切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2016, Vol. 04 ›› Issue (01) : 39 -43. doi: 10.3877/cma.j.issn.2095-5782.2016.01.011

所属专题: 文献

基础研究

2450 MHz与915 MHz微波消融离体牛肝:消融范围、能量输出与转化的差异
江雄鹰1, 陈栋1, 倪嘉延1, 王卫东1, 骆江红1, 陈耀庭1, 孙宏亮1, 许林锋1,()   
  1. 1. 510120 广州,中山大学孙逸仙纪念医院介入放射科
  • 收稿日期:2015-12-13 出版日期:2016-02-01
  • 通信作者: 许林锋

2450 MHz and 915 MHz microwave ablation in ex vivo bovine livers: the difference in ablation zone, energy and energy conversion

Xiongying Jiang1, Dong Chen1, Jiayan Ni1, Weidong Wang1, Jianghong Luo1, Yaoting Chen1, Hongliang Sun1, Linfeng Xu1,()   

  1. 1. Department of Interventional Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2015-12-13 Published:2016-02-01
  • Corresponding author: Linfeng Xu
  • About author:
    Corresponding author: Xu Linfeng, Email:
引用本文:

江雄鹰, 陈栋, 倪嘉延, 王卫东, 骆江红, 陈耀庭, 孙宏亮, 许林锋. 2450 MHz与915 MHz微波消融离体牛肝:消融范围、能量输出与转化的差异[J]. 中华介入放射学电子杂志, 2016, 04(01): 39-43.

Xiongying Jiang, Dong Chen, Jiayan Ni, Weidong Wang, Jianghong Luo, Yaoting Chen, Hongliang Sun, Linfeng Xu. 2450 MHz and 915 MHz microwave ablation in ex vivo bovine livers: the difference in ablation zone, energy and energy conversion[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2016, 04(01): 39-43.

目的

探讨2450 MHz水冷循环与915 MHz无水冷循环微波消融离体牛肝在毁损范围、能量输出以及能量转化方面的差异。

方法

新鲜离体牛肝10副,重量为5.2~6.5 kg。实验分为A组和B组,A组为2450 MHz水冷循环微波消融组,B组为915 MHz无水冷循环微波消融组。每组分别对离体牛肝进行10、20、30、40 min的消融实验。统计两种消融系统在毁损范围(平均径、体积、类圆率)、能量输出以及能量转化方面的数据,并比较其差异。

结果

A组和B组的消融平均径随着消融时间延长逐渐增大。B组的消融平均径显著大于A组(P均<0.001)。消融体积在10和20 min时两组间无明显差异(P=0.44、0.65),消融30 min以后,B组消融体积显著大于A组(P<0.001)。B组消融灶的平均径最大可达6.5 cm,消融体积最大为112.20 cm3(消融40 min)。A组的消融灶类圆率较B组更接近于1(P均<0.001),A组消融灶的类圆性更好。在能量输出方面,A组显著高于B组(P均<0.001),相同消融时间A组能量输出为B组的2倍以上。但能量转化效率方面,B组显著高于A组(P均<0.001)。

结论

2450 MHz水冷循环微波具有更高的能量输出和类圆性更好的消融范围,但915 MHz无水冷循环微波的能量转化效率更高,所获得的消融范围更大。

Objective

To compare ablation zone, total deposited energy and energy conversion efficiency between 915 MHz non-cooled shaft and 2450 MHz cooled shaft microwave ablation in ex vivo bovine livers.

Methods

Experiment was carried out in ten fresh excised bovine livers weight 5.2-6.5 kg. The ten livers were divided into two groups, with Group A be 2450 MHz cooled shaft microwave ablation, and Group B be 915 MHz non-cooled shaft microwave ablation. In each group, different ablation durations (10, 20, 30, and 40 minutes) were evaluated. We compared coagulation diameters and volume, sphericity ratio, deposited energy, energy conversion efficiency in each ablation time.

Results

Compare to Group B, the mean coagulation volume and transverse diameter were significantly greater with Group A and longitudinal diameter was lower (P<0.001). The sphericity ratio was closer to 1 with Group A. Total deposited energy with Group A was significantly larger than in Group B. The value of total deposited energy with Group A was about two times with Group B in the same ablation duration. The energy conversion efficiency between the two groups was not statistically significantly differ for 10 minutes ablation but increased significantly with Group B than with Group A from 20 minutes to 40 minutes (P<0.05 in all).

Conclusions

Due to more energy deposition, 2450 MHz cooled shaft microwave ablation can create substantially larger and more spherical ablation lesionsthan 915 MHz non-cooled shaft microwave ablation. But the energy conversion efficiency with 915 MHz non-cooled shaft microwave ablation is higher.

图1 消融灶大体观。
图2 微波毁损灶测量方法
表1 两组间消融毁损灶平均径、体积、类圆率、能量输出和能量转化情况比较
1
Cance WG, Stewart AK, Menck HR. The National Cancer Data Base Report on treatment patterns for hepatocellular carcinomas: improved survival of surgically resected patients, 1985-1996[J]. Cancer,2000,88(4):912-920.
2
Solbiati L, Livraghi T, Goldberg SN, et al. Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients[J]. Radiology, 2001,221(1):159-166.
3
Lencioni R, Cioni D, Crocetti L, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation[J]. Radiology,2005,234(3):961-967.
4
Peng ZW, Lin XJ, Zhang YJ, et al. Radiofrequency ablation versus hepatic resection for the treatment of hepatocellular carcinomas 2 cm or smaller: a retrospective comparative study[J]. Radiology,2012,262(3):1022-1033. doi: 10.1148/radiol.11110817.
5
Fan W, Li X, Zhang L, et al. Comparison of microwave ablation and multipolar radiofrequency ablation in vivo using two internally cooled probes[J]. AJR Am J Roentgenol,2012,198(1):W46-W50. doi: 10.2214/AJR.11.6707.
6
Laeseke PF, Lee FJ, Sampson LA, et al. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes[J]. J Vasc Interv Radiol, 2009, 20(9):1224-1229. doi: 10.1016/j.jvir.2009.05.029.
7
梁萍,董宝玮,于小玲,等. 超声引导经皮微波凝固治疗肝癌的临床研究[J]. 中华肝胆外科杂志,1998,4(4):210-212. doi:10.3760/cma.j.issn.1007-8118.1998.04.008.
8
管军,姚晓平,吴孟超,等. 微波组织凝固对晚期肝癌患者抗肿瘤免疫力的影响[J]. 中华物理医学杂志,1998,(3):42-44. doi:10.3760/j:issn:0254-1424.1998.03.013.
9
Sun Y, Wang Y, Ni X, et al. Comparison of ablation zone between 915- and 2,450- MHz cooled-shaft microwave antenna: results in in vivo porcine livers[J]. AJR Am J Roentgenol,2009,192(2):511-514. doi: 10.2214/AJR.07.3828.
10
Sun Y, Cheng Z, Dong L, et al. Comparison of temperature curve and ablation zone between 915- and 2450- MHz cooled-shaft microwave antenna: results in ex vivo porcine livers[J]. Eur J Radiol,2012,81(3):553-557. doi: 10.1016/j.ejrad.2011.02.013.
11
Hoffmann R, Rempp H, Erhard L, et al. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver[J]. Radiology,2013,268(1):89-97. doi: 10.1148/radiol.13121127.
12
Burdio F, Navarro A, Berjano EJ, et al. Radiofrequency hepatic ablation with internally cooled electrodes and hybrid applicators with distant saline infusion using an in vivo porcine model[J]. Eur J Surg Oncol,2008,34(7):822-830.
13
Zhou Q, Jin X, Jiao DC, et al. Microwave ablation: results in ex vivo and in vivo porcine livers with 2450- MHz cooled-shaft antenna[J]. Chin Med J (Engl),2011,124(20):3386-3393.
14
Petryk AA, Giustini AJ, Gottesman RE, et al. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model[J]. Int J Hyperthermia, 2013, 29(8):819-827. doi: 10.3109/02656736.2013.845801.
15
Liu FY, Yu XL, Liang P, et al. Comparison of percutaneous 915 MHz microwave ablation and 2450 MHz microwave ablation in large hepatocellular carcinoma[J]. Int J Hyperthermia,2010,26(5):448-455. doi: 10.3109/02656731003717574.
16
Qian GJ, Wang N, Shen Q, et al. Efficacy of microwave versus radiofrequency ablation for treatment of small hepatocellular carcinoma: experimental and clinical studies[J]. Eur Radiol, 2012, 22(9):1983-1990. doi: 10.1007/s00330-012-2442-1.
17
Andreano A, Huang Y, Meloni MF, et al. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue[J]. Med Phys, 2010,37(6):2967-2973.
18
张亮,黄子林,范卫君,等. 离体猪肝微波消融固化范围与组织局部热沉积剂量的相关性研究[J]. 新医学,2013,44(7):499-503. doi:10.3969/g.issn.0253-9802.2013.07.017.
[1] 赵丹, 赵齐羽, 王彩芬, 蒋天安. 模拟甲状腺囊实性结节囊性成分射频和微波消融的离体实验研究[J]. 中华医学超声杂志(电子版), 2022, 19(02): 176-181.
[2] 张瑞敏, 于杰, 于晓玲. 早期肾细胞癌的影像引导消融治疗[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 381-384.
[3] 任茂玲, 孙晓容, 何晓丽. CT引导下微波消融术在肺部结节治疗中的应用及术后并发症的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 718-720.
[4] 蒙姣姣, 胡刚, 欧阳涣堃. 肺癌术前淋巴结转移及MWA手术效果预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 547-549.
[5] 杨豆, 晋云, 王峻峰, 胡苹苹, 杨超, 韦翔曦. 腹腔镜超声引导下微波消融术在结直肠癌肝转移中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 114-116.
[6] 曾庆劲, 赵里汶, 吴宇轩, 贺需旗, 张兰霞, 余萱, 何娜, 郑荣琴, 李凯. 超声引导经皮热消融治疗邻近心脏的肝脏恶性肿瘤疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 49-54.
[7] 王晶晶, 邓旭, 张灵强, 黄汉生, 王海久, 樊海宁, 王金环, 吕明德, 阳丹才让. 超声造影评估肝泡型包虫病微波消融治疗效果[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 629-633.
[8] 叶齐, 高志星, 张鹏杰, 张瑞阳, 杨智義, 胡欣芫, 赵成俊, 王海久, 阳丹才让, 樊海宁, 张灵强. 微波消融治疗原发性肝癌现状及疗效评价[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 323-326.
[9] 江蜜, 柴楚星, 张树华, 唐勇, 胡青钢, 万赤丹, 熊俊. 微波消融联合手术切除治疗巨大肝血管瘤一例[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 320-322.
[10] 谢静, 毛先海, 杨建辉, 段小辉, 田朕安, 张雄, 高绪照. 再次肝切除与腹腔镜微波消融治疗复发性小肝癌临床疗效比较[J]. 中华肝脏外科手术学电子杂志, 2022, 11(03): 258-262.
[11] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[12] 毛媛媛, 殷曰帅, 宓兵, 胡效坤. CT引导下经皮穿刺肺腺癌微波消融后致巨大空洞一例[J]. 中华介入放射学电子杂志, 2023, 11(03): 287-288.
[13] 张勇创, 李威, 满文玲, 杨坡. 超声引导下微波消融治疗下肢静脉曲张的疗效观察[J]. 中华介入放射学电子杂志, 2023, 11(03): 218-222,246.
[14] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[15] 朱炳橙, 田伟, 周春, 施海彬, 刘圣. 基于肿瘤负荷评分评估TACE联合MWA治疗转移性肝癌的预后[J]. 中华介入放射学电子杂志, 2022, 10(01): 32-38.
阅读次数
全文


摘要