[1] |
Brassel F, Meila D. Evolution of embolic agents in interventional neuroradiology[J]. Clinical Neuroradiology, 2015, 25(Suppl 2): 333-339.
|
[2] |
Turjman F, Massoud TF, Vinters HV, et al. Collagen microbeads: experimental evaluation of an embolic agent in the rete mirabile of the swine[J]. American Journal of Neuroradiology, 1995, 16(5): 1031-1036.
|
[3] |
Lord J, Britton H, Spain S G, et al. Advancements in the development on new liquid embolic agents for use in therapeutic embolisation[J]. Journal of Materials Chemistry B, 2020, 8(36): 8207-8218.
|
[4] |
张碧君, 邹祖豪, 聂小琴, 等. 壳聚糖温敏水凝胶研究进展[J]. 山东化工, 2020, 49(10): 49-51.
|
[5] |
范冉冉, 刘原兵, 张婷, 等. 基于临床需求的温敏凝胶在不同给药部位的应用研究进展[J]. 药学学报, 2022, 57(5): 1235-1244.
|
[6] |
Divya K, Jisha MS. Chitosan nanoparticles preparation and applications[J]. Environmental Chemistry Letters, 2018, 16: 101-112.
|
[7] |
Fatimi A, Zehtabi F, Lerouge S. Optimization and characterization of injectable chitosan-iodixanol-based hydrogels for the embolization of blood vessels[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(8): 1551-1562.
|
[8] |
Wang Y, Xu N, Luo Q, et al. In vivo assessment of chitosan/β-glycerophosphate as a new liquid embolic agent[J]. Interventional Neuroradiology, 2011, 17(1): 87-92.
|
[9] |
Fatimi A, Chabrot P, Berrahmoune S, et al. A new injectable radiopaque chitosan-based sclerosing embolizing hydrogel for endovascular therapies[J]. Acta Biomaterialia, 2012, 8(7): 2712-2721.
|
[10] |
Ning X, Zhao C, Pang J, et al. Experimental study of temperature-sensitive chitosan/β-glycerophosphate embolic material in embolizing the basicranial rete mirabile in swines[J]. Experimental and Therapeutic Medicine, 2015, 10(1): 316-322.
|
[11] |
Zehtabi F, Ispas-Szabo P, Djerir D, et al. Chitosan-doxycycline hydrogel: an MMP inhibitor/sclerosing embolizing agent as a new approach to endoleak prevention and treatment after endovascular aneurysm repair[J]. Acta Biomaterialia, 2017, 64: 94-105.
|
[12] |
Salis A, Rassu G, Budai-Szűcs M, et al. Development of thermosensitive chitosan/glicerophospate injectable in situ gelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study[J]. Expert Opinion on Drug Delivery, 2015, 12(10): 1583-1596.
|
[13] |
Kapoor S, Kundu SC. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31: 17-32.
|
[14] |
Hatlevik Ø, Jensen M, Steinhauff D, et al. Translational development of a silk-elastinlike protein polymer embolic for transcatheter arterial embolization[J]. Macromolecular Bioscience, 2022, 22(2): 2100401.
|
[15] |
Jensen MM, Hatlevik Ø, Steinhauff DD, et al. Protein-based polymer liquid embolics for cerebral aneurysms[J]. Acta Biomaterialia, 2022, 151: 174-182.
|
[16] |
Poursaid A, Price R, Tiede A, et al. In situ gelling silk-elastinlike protein polymer for transarterial chemoembolization[J]. Biomaterials, 2015, 57: 142-152.
|
[17] |
Poursaid A, Jensen MM, Nourbakhsh I, et al. Silk-elastinlike protein polymer liquid chemoembolic for localized release of doxorubicin and sorafenib[J]. Molecular Pharmaceutics, 2016, 13(8): 2736-2748.
|
[18] |
Patel HR, Patel RP, Patel MM. Poloxamers: a pharmaceutical excipients with therapeutic behaviors[J]. International Journal of PharmTech Research, 2009, 1(2): 299-303.
|
[19] |
Raymond J, Metcalfe A, Salazkin I, et al. Temporary vascular occlusion with poloxamer 407[J]. Biomaterials, 2004, 25(18): 3983-3989.
|
[20] |
Gucu A, Cavusoglu I, Eris C, et al. Effects of temporary vascular occluder poloxamer 407 Gel on the endothelium[J]. Journal of Cardiothoracic Surgery, 2013, 8: 16.
|
[21] |
Ohta S, Nitta N, Takahashi M, et al. Pluronic F127: application in arterial embolization[J]. Journal of Vascular and Interventional Radiology, 2006, 17(3): 533-539.
|
[22] |
He Y, Yuan T, Wang X, et al. Temperature sensitive hydrogel for preoperative treatment of renal carcinoma[J]. Materials Science and Engineering: C, 2020, 111: 110798.
|
[23] |
Wang Q, He Y, Shen M, et al. Precision Embolism: biocompatible temperature‐sensitive hydrogels as novel embolic materials for both mainstream and peripheral vessels[J]. Advanced Functional Materials, 2021, 31(20): 2011170.
|
[24] |
Huang L, Shen M, Li R, et al. Thermo-sensitive composite hydrogels based on poloxamer 407 and alginate and their therapeutic effect in embolization in rabbit VX2 liver tumors[J]. Oncotarget, 2016, 7(45): 73280-73291.
|
[25] |
Matsumaru Y, Hyodo A, Nose T, et al. Application of thermosensitive polymers as a new embolic material for intravascular neurosurgery[J]. Journal of Biomaterials Science, Polymer Edition, 1996, 7(9): 795-804.
|
[26] |
Vernon B, Martinez A. Gel strength and solution viscosity of temperature-sensitive, in-situ-gelling polymers for endovascular embolization[J]. Journal of Biomaterials Science, Polymer Edition, 2005, 16(9): 1153-1166.
|
[27] |
Li X, Liu W, Ye G, et al. Thermosensitive N-isopropylacrylamide–N–propylacrylamide-vinyl pyrrolidone terpolymers: synthesis, characterization and preliminary application as embolic agents[J]. Biomaterials, 2005, 26(34): 7002-7011.
|
[28] |
Dai F, Tang L, Yang J, et al. Fast thermoresponsive BAB-type HEMA/NIPAAm triblock copolymer solutions for embolization of abnormal blood vessels[J]. Journal of Materials Science: Materials in Medicine, 2009, 20: 967-974.
|
[29] |
Zhao Y, Zheng C, Wang Q, et al. Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors[J]. Advanced Functional Materials, 2011, 21(11): 2035-2042.
|
[30] |
Zhao H, Zheng C, Feng G, et al. Temperature-sensitive poly (N-isopropylacrylamide-co-butyl methylacrylate) nanogel as an embolic agent: distribution, durability of vascular occlusion, and inflammatory reactions in the renal artery of rabbits[J]. American Journal of Neuroradiology, 2013, 34(1): 169-176.
|
[31] |
Li L, Liu Y, Li H, et al. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization[J]. Theranostics, 2018, 8(22): 6291.
|
[32] |
Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor[J]. Journal of Controlled Release, 2015, 212: 41-49.
|
[33] |
Liu Y, Peng X, Qian K, et al. Temperature sensitive p (N-isopropylacrylamide-co-acrylic acid) modified gold nanoparticles for trans-arterial embolization and angiography[J]. Journal of Materials Chemistry B, 2017, 5(5): 907-916.
|
[34] |
Liu Y, Shi D, Ren Y, et al. The immune-chemo-embolization effect of temperature sensitive gold nanomedicines against liver cancer[J]. Nano Research, 2023, 16(2): 2749-2761.
|
[35] |
Wan J, Geng S, Zhao H, et al. Doxorubicin-induced co-assembling nanomedicines with temperature-sensitive acidic polymer and their in-situ-forming hydrogels for intratumoral administration[J]. Journal of Controlled Release, 2016, 235: 328-336.
|
[36] |
Li Y, Ge X, Li Z, et al. Application of temperature-sensitive liquid embolic agent loaded with oxaliplatin in the TACE procedure for rabbit VX2 gastric cancer[J]. Drug Delivery and Translational Research, 2024, 14(3):705-717.
|
[37] |
Shi X, Gao H, Dai F, et al. A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries[J]. Biomaterials Science, 2016, 4(11): 1673-1681.
|
[38] |
Liang R, Yu H, Wang L, et al. Highly tough hydrogels with the body temperature-responsive shape memory effect[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43563-43572.
|
[39] |
Zhou H, Xie W, Guo A, et al. Temperature sensitive nanogels for real-time imaging during transcatheter arterial embolization[J]. Designed Monomers and Polymers, 2023, 26(1): 31-44.
|
[40] |
Bouchot O, Aubin MC, Carrier M, et al. Temporary coronary artery occlusion during off-pump coronary artery bypass grafting with the new poloxamer P407 does not cause endothelial dysfunction in epicardial coronary arteries[J]. The Journal of Thoracic and Cardiovascular Surgery, 2006, 132(5): 1144-1149.
|
[41] |
Wimmer-Greinecker G, Bouchot O, Verhoye J P, et al. Randomized clinical trial comparing a thermosensitive polymer (LeGoo) with conventional vessel loops for temporary coronary artery occlusion during off-pump coronary artery bypass surgery[J]. The Annals of thoracic surgery, 2011, 92(6): 2177-2183.
|
[42] |
San Norberto EM, Taylor JH, Carrera S, et al. Intraoperative embolization with poloxamer 407 during surgical resection of a carotid body tumor[J]. Journal of Vascular Surgery, 2012, 56(6): 1782-1785.
|
[43] |
曹广, 杨仁杰, 朱旭, 等新型温度敏感型栓塞剂用于原发性肝癌动脉栓塞的初步临床试验[J]. 介入放射学杂志, 2015, 24(7): 592-596.
|
[44] |
Wang J, Pang Q, Liu Z, et al. A new liquid agent for endovascular embolization: initial clinical experience[J]. ASAIO Journal, 2009, 55(5): 494-497.
|
[45] |
陈坚, 连伟, 吴迪圣. 温度敏感型液体栓塞剂经支气管动脉栓塞治疗咯血的短期疗效及安全性分析[J]. 医学影像学杂志, 2023, 33(08): 1390-1393.
|