[1] |
Ning R, Chen B, Yu R, et al. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation[J]. IEEE Trans Med Imaging, 2000, 19(9): 949-963.
|
[2] |
Floridi C, Radaelli A, Abi-Jaoudeh N, et al. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications[J]. Radiol Med, 2014, 119(7): 521-532.
|
[3] |
Pellerin O, Pereira H, Van Ngoc Ty C, et al. Is dual-phase C-arm CBCT sufficiently accurate for the diagnosis of colorectal cancer liver metastasis during liver intra-arterial treatment?[J]. Eur Radiol, 2019, 29(10): 5253-5263.
|
[4] |
Schernthaner RE, Lin M, Duran R, et al. Delayed-phase cone-beam ct improves detectability of intrahepatic cholangiocarcinoma during conventional transarterial chemoembolization[J]. Cardiovasc Intervent Radiol, 2015, 38(4): 929-936.
|
[5] |
Yu MH, Kim JH, Yoon JH, et al. Role of C-arm CT for transcatheter arterial chemoembolization of hepatocellular carcinoma: diagnostic performance and predictive value for therapeutic response compared with gadoxetic acid-enhanced MRI[J]. Am J Roentgenol, 2013, 201(3): 675-683.
|
[6] |
李桂芬, 孙毅, 赵妍, 等. 锥形束CT增强扫描在结直肠癌肝转移瘤TACE术中的指导作用[J]. 中西医结合肝病杂志, 2022, 32(5): 443-446.
|
[7] |
Miyayama S, Yamashiro M, Ikuno M, et al. Ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinoma guided by automated tumor-feeders detection software: technical success and short-term tumor response[J]. Abdom Imaging, 2014, 39(3): 645-656.
|
[8] |
Pung L, Ahmad M, Mueller K, et al. The role of cone-beam CT in transcatheter arterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis[J]. J Vasc Interv Radiol, 2017, 28(3): 334-341.
|
[9] |
Yao X, Yan D, Jiang X, et al. Dual-phase cone-beam CT-based navigation imaging significantly enhances tumor detectability and aids superselective transarterial chemoembolization of liver cancer[J]. Acad Radiol, 2018, 25(8): 1031-1037.
|
[10] |
Iwazawa J, Ohue S, Hashimoto N, et al. Survival after C-arm CT-assisted chemoembolization of unresectable hepatocellular carcinoma[J]. Eur J Radiol, 2012, 81(12): 3985-3992.
|
[11] |
Ozaki K, Kobayashi S, Matsui O, et al.Extrahepatic arteries originating from hepatic arteries: analysis using CT during hepatic arteriography and visualization on digital subtraction angiography[J]. Cardiovasc Intervent Radiol, 2017, 40(6): 822-830.
|
[12] |
Cho Y, Choi JW, Kwon H, et al. Transarterial chemoembolization for hepatocellular carcinoma: 2023 expert consensus-based practical recommendations of the korean liver cancer association[J]. Korean J Radiol, 2023, 24(7): 606-625.
|
[13] |
Minami Y, Murakami T, Kitano M, et al. Cone-beam CT angiography for hepatocellular carcinoma: current status[J]. Dig Dis, 2015, 33(6): 759-764.
|
[14] |
Choi SY, Kim KA, Choi W, et al. Usefulness of cone-beam CT-based liver perfusion mapping for evaluating the response of hepatocellular carcinoma to conventional transarterial chemoembolization[J]. J Clin Med, 2021, 10(4): 713.
|
[15] |
Chen R, Geschwind JF, Wang Z, et al. Quantitative assessment of lipiodol deposition after chemoembolization: comparison between cone-beam CT and multidetector CT[J]. J Vasc Interv Radiol, 2013, 24(12): 1837-1844.
|
[16] |
Ruff C, Artzner C, Syha R, et al. Transarterial chemoembolization of hepatocellular carcinoma using radiopaque drug-eluting embolics: impact of embolic density and residual tumor perfusion on tumor recurrence and survival[J]. Cardiovasc Intervent Radiol, 2021, 44(9): 1403-1413.
|
[17] |
Fronda M, Mistretta F, Calandri M, et al. The role of immediate post-procedural cone-beam computed tomography (CBCT) in predicting the early radiologic response of hepatocellular carcinoma (HCC) nodules to drug-eluting bead transarterial chemoembolization (DEB-TACE)[J]. J Clin Med, 2022, 11(23): 7089.
|
[18] |
Syha R, Grözinger G, Grosse U, et al. Parenchymal blood volume assessed by C-arm-based computed tomography in immediate posttreatment evaluation of drug-eluting bead transarterial chemoembolization in hepatocellular carcinoma[J]. Invest Radiol, 2016, 51(2): 121-126.
|
[19] |
Louie JD, Kothary N, Kuo WT,et al. Incorporating cone-beam CT into the treatment planning for yttrium-90 radioembolization[J]. J Vasc Interv Radiol, 2009, 20(5): 606-613.
|
[20] |
Weissinger M, Vogel J, Kupferschläger J, et al. Correlation of C-arm CT acquired parenchymal blood volume (PBV) with 99mTc-macroaggregated albumin (MAA) SPECT/CT for radioembolization work-up[J]. PLoS One, 2020, 15(12): e0244235.
|
[21] |
Levillain H, Bagni O, Deroose CM, et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres[J]. Eur J Nucl Med Mol Imaging, 2021, 48(5): 1570-1584.
|
[22] |
Jafargholi Rangraz E, Tang X, et al. Quantitative comparison of pre-treatment predictive and post-treatment measured dosimetry for selective internal radiation therapy using cone-beam CT for tumor and liver perfusion territory definition[J]. EJNMMI Res, 2020, 10(1): 94.
|
[23] |
Derbel H, Krichen M, Chalaye J, et al. Accuracy and reproducibility of a cone beam CT-based virtual parenchymal perfusion algorithm in the prediction of SPECT/CT anatomical and volumetric results during the planification of radioembolization for HCC[J]. Eur Radiol, 2023, 33(5): 3510-3520.
|
[24] |
O'Connor PJ, Pasik SD, van der Bom IM, et al. Feasibility of Yttrium-90 radioembolization dose calculation utilizing intra-procedural open trajectory cone beam CT[J]. Cardiovasc Intervent Radiol, 2020, 43(2): 295-301.
|
[25] |
Widmann G, Bodner G, Bale R. Tumour ablation: technical aspects[J]. Cancer Imaging, 2009, No A (Special issue A): S63-67.
|
[26] |
Gordon AC, Lewandowski RJ. CBCT-guided TACE-MWA for HCC measuring up to 5 cm[J]. Acad Radiol, 2021, 28 Suppl 1: S71-72.
|
[27] |
Lyu T, Wang J, Cao S, Song L, et al. Radiofrequency ablation guided by cone beam computed tomography for hepatocellular carcinoma: a comparative study of clinical results with the conventional spiral computed tomography-guided procedure[J]. J Int Med Res, 2019, 47(8): 3699-3708.
|
[28] |
Li Z, Xu K, Zhou X, et al. TACE sequential MWA guided by cone-beam computed tomography in the treatment of small hepatocellular carcinoma under the hepatic dome[J]. BMC Cancer, 2023, 23(1): 600.
|
[29] |
Yuan H, Li X, Tian X, et al. Comparison of Angio-CT and cone-beam CT-guided immediate radiofrequency ablation after transcatheter arterial chemoembolization for large hepatocellular carcinoma[J]. Abdom Radiol (NY), 2020, 45(8): 2585-2592.
|
[30] |
Wong SY, Foley S, Cantwell CP, et al. The effects of cone-beam computed tomography imaging guidance on patient radiation exposures in trans-arterial chemoembolisation for hepatocellular carcinoma[J]. Radiat Prot Dosimetry, 2022, 198(8): 441-447.
|
[31] |
姚雪松, 闫东, 曾辉英, 等. 肝细胞癌TACE治疗中C臂CT扫描X线辐射剂量与时间效率的评估[J]. 肝癌电子杂志, 2014, 1(2): 36-39.
|
[32] |
Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles[J]. AJNR Am J Neuroradiol, 2009, 30(6): 1088-1095.
|
[33] |
Lin EY, Jones AK, Chintalapani G, et al. Comparative analysis of intra-arterial cone-beam versus conventional computed tomography during hepatic arteriography for transarterial chemoembolization planning[J]. Cardiovasc Intervent Radiol, 2019, 42(4): 591-600.
|
[34] |
Taiji R, Lin EY, Lin YM, et al. Combined angio-CT systems: a roadmap tool for precision therapy in interventional oncology[J]. Radiol Imaging Cancer, 2021, 3(5): e210039.
|