[1] |
Du Z, Zheng J, Zhang Z, et al. Review of the endothelial pathogenic mechanism of TIE2-related venous malformation[J]. Journal of Vascular Surgery, Venous and Lymphatic Disorders, 2017, 5(5): 740-748.
|
[2] |
中华医学会整形外科分会血管瘤和脉管畸形学组. 血管瘤和脉管畸形的诊断及治疗指南(2019版)[J]. 组织工程与重建外科杂志, 2019, 15(5): 277-317.
|
[3] |
Soblet J, Limaye N, Uebelhoer M, et al. Variable somatic TIE2 mutations in half of sporadic venous malformations[J]. Molecular Syndromology, 2013, 4(4): 179-183.
|
[4] |
Dompmartin A, Ballieux F, Thibon P, et al. Elevated D-dimer level in the differential diagnosis of venous malformations[J]. Archives of Dermatology, 2009, 145(11): 1239-1244.
|
[5] |
Mason KP, Neufeld EJ, Karian VE, et al. Coagulation abnormalities in pediatric and adult patients after sclerotherapy or embolization of vascular anomalies[J]. AJR, 2001, 177(6): 1359-1363.
|
[6] |
Aronniemi J, Långström S, Mattila KA, et al. Venous Malformations and Blood Coagulation in Children[J]. Children, 2021, 8(4): 312.
|
[7] |
Leung YCL, Leung MWY, Yam SD, et al. D-dimer level correlation with treatment response in children with venous malformations[J]. Journal of Pediatric Surgery, 2018, 53(2): 289-292.
|
[8] |
Boon LM, Mulliken JB, Enjolras O, et al. Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities[J]. Archives of Dermatology, 2004, 140(8): 971-976.
|
[9] |
Wouters V, Limaye N, Uebelhoer M, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects[J]. EJHG, 2010, 18(4): 414-420.
|
[10] |
Holleran G, Hall B, O'Regan M, et al. Expression of angiogenic factors in patients with sporadic small bowel angiodysplasia[J]. Journal of Clinical Gastroenterology, 2015, 49(10): 831-836.
|
[11] |
Vikkula M, Boon LM, Carraway KL, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2[J]. Cell, 1996, 87(7): 1181-1190.
|
[12] |
Si Y, Huang J, Li X, et al. AKT/FOXO1 axis links cross-talking of endothelial cell and pericyte in TIE2-mutated venous malformations[J]. CCS, 2020, 18(1): 139.
|
[13] |
郭磊, 宋丹, 王亮. 泡沫硬化剂治疗静脉畸形中国专家共识[J]. 血管与腔内血管外科杂志, 2022, 8(11): 1281-1285+1310.
|
[14] |
王德明, 苏立新, 范新东. 静脉畸形中国专家共识[J]. 介入放射学杂志, 2019, 28(4): 307-311.
|
[15] |
Boscolo E, Limaye N, Huang L, et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects[J]. The Journal of Clinical Investigation, 2015, 125(9): 3491-3504.
|
[16] |
Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations[J]. Nature Genetics, 2009, 41(1): 118-124.
|
[17] |
Queisser A, Boon LM, Vikkula M. Etiology and Genetics of Congenital Vascular Lesions[J]. Otolaryngologic Clinics of North America, 2018, 51(1): 41-53.
|
[18] |
Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche[J]. Cell, 2004, 118(2): 149-161.
|
[19] |
Eklund L, Kangas J, Saharinen P. Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems[J]. Clinical Science, 2017, 131(1): 87-103.
|
[20] |
Khan AA, Sandhya VK, Singh P, et al. Signaling network map of endothelial TEK tyrosine kinase[J]. Journal of Signal Transduction, 2014, 2014: 173026.
|
[21] |
Castillo SD, Baselga E, Graupera M. PIK3CA mutations in vascular malformations[J]. Current Opinion in Hematology, 2019, 26(3): 170-178.
|
[22] |
Nätynki M, Kangas J, Miinalainen I, et al. Common and specific effects of TIE2 mutations causing venous malformations[J]. Human Molecular Genetics, 2015, 24(22): 6374-6389.
|
[23] |
Limaye N, Kangas J, Mendola A, et al. Somatic activating PIK3CA mutations cause venous malformation[J]. American Journal of Human Genetics, 2015, 97(6): 914-921.
|
[24] |
Shewchuk LM, Hassell AM, Ellis B, et al. Structure of the Tie2 RTK domain: self-inhibition by the nucleotide binding loop, activation loop, and C-terminal tail[J]. Structure, 2000, 8(11): 1105-1113.
|
[25] |
Niu XL, Peters KG, Kontos CD. Deletion of the carboxyl terminus of Tie2 enhances kinase activity, signaling, and function. Evidence for an autoinhibitory mechanism[J]. The Journal of Biological Chemistry, 2002, 277(35): 31768-31773.
|
[26] |
施磊, 孙圆圆, 甘露, 等. 西罗莫司对TIE2-L914F突变导致的静脉畸形血管内皮细胞增殖和凋亡的影响及其体外机制探究[J]. 安徽医科大学学报, 2023, 58(4): 561-567.
|
[27] |
郑家伟, 赵泽亮. 血管瘤和脉管畸形的遗传学研究进展[J]. 口腔疾病防治, 2019, 27(12): 749-756.
|
[28] |
Ren J, Hong T, Zhang H. Angioarchitecture and genetic variants of spinal cord cavernous malformations and associated developmental venous anomalies: a case report[J]. Childs Nerv Syst, 2023, 39(7): 1945-1948.
|
[29] |
Sotthibundhu A, McDonagh K, von Kriegsheim A, et al. Rapamycin regulates autophagy and cell adhesion in induced pluripotent stem cells[J]. Stem Cell Research & Therapy, 2016, 7(1): 166.
|
[30] |
Triana P, Lopez-Gutierrez JC. Activity of a TIE2 inhibitor (rebastinib) in a patient with a life-threatening cervicofacial venous malformation[J]. Pediatric Blood & Cancer, 2023, 70(8): e30404.
|
[31] |
Engel ER, Hammill A, Adams D, et al. Response to sirolimus in capillary lymphatic venous malformations and associated syndromes: Impact on symptomatology, quality of life, and radiographic response[J]. Pediatric Blood & Cancer, 2023, 70(4): e30215.
|
[32] |
Zhou C, Clamp A, Backen A, et al. Systematic analysis of circulating soluble angiogenesis-associated proteins in ICON7 identifies Tie2 as a biomarker of vascular progression on bevacizumab[J]. British Journal of Cancer, 2016, 115(2): 228-235.
|
[33] |
Michael IP, Orebrand M, Lima M, et al. Angiopoietin-1 deficiency increases tumor metastasis in mice[J]. BMC Cancer, 2017, 17(1): 539.
|
[34] |
Augustin HG, Koh GY, Thurston G, et al. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system[J]. Nature Reviews. Molecular Cell Biology, 2009, 10(3): 165-177.
|
[35] |
Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning[J]. Cell, 1996, 87(7): 1161-1169.
|
[36] |
Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis[J]. Science, 1997, 277(5322): 55-60.
|
[37] |
Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies[J]. Blood, 2004, 103(11): 4150-4156.
|
[38] |
Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo[J]. Proc Nat Acad Sci U S A, 2002, 99(17): 11205-11210.
|
[39] |
Vadas O, Burke JE, Zhang X, et al. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases[J]. Science Signaling, 2011, 4(195): re2.
|
[40] |
Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling[J]. Nat Rev Mol Cell Biol, 2010, 11(5): 329-341.
|
[41] |
Samuels Y, Waldman T. Oncogenic mutations of PIK3CA in human cancers[J]. Curr Top Microbiol Immunol, 2010, 347: 21-41.
|
[42] |
Petkova M, Kraft M, Stritt S, et al. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation[J]. J Exp Med, 2023, 220(4): e20220741.
|
[43] |
Sheppard SE, Sanders VR, Srinivasan A, et al. Cerebrofacial vascular metameric syndrome is caused by somatic pathogenic variants in PIK3CA[J]. Cold Spring Harb Mol Case Stud, 2021, 7(6): a006147.
|
[44] |
Castel P, Carmona FJ, Grego-Bessa J, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations[J]. Sci Transl Medi, 2016, 8(332): 332ra42.
|
[45] |
di Blasio L, Puliafito A, Gagliardi PA, et al. PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations[J]. Cell Death & Disease, 2018, 9(2): 45.
|
[46] |
Schömel N, Gruber L, Alexopoulos SJ, et al. UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells[J]. Scientific Reports, 2020, 10(1): 8182.
|
[47] |
Chen S, Wang Y, Kong L, et al. Role of UDP-glucose ceramide glucosyltransferase in venous malformation[J]. Front Cell Dev Biol, 2023, 11: 1178045.
|
[48] |
Hartwig P, Höglinger D. The Glucosylceramide Synthase Inhibitor PDMP Causes Lysosomal Lipid Accumulation and mTOR Inactivation[J]. Int J Mol Sci, 2021, 22(13): 7065.
|