[1] |
中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南(2022年版)[J]. 肿瘤综合治疗电子杂志, 2022, 8(2): 16-53.
|
[2] |
Tong Y, Yang H, Xu X, et al. Effect of a hypoxic microenvironment after radiofrequency ablation on residual hepatocellular cell migration and invasion[J]. Cancer Sci, 2017, 108(4): 753-762.
|
[3] |
Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy[J]. Nat Rev Cancer, 2014, 14(3): 199-208.
|
[4] |
Chen Y, Bei J, Liu M, et al. Sublethal heat stress-induced O-GlcNAcylation coordinates the Warburg effect to promote hepatocellular carcinoma recurrence and metastasis after thermal ablation[J]. Cancer Letters, 2021, 518: 23-34.
|
[5] |
Scudellarl M. Drug development: try and try again[J]. Nature, 2014, 516(7529): S4-6.
|
[6] |
Zender L, Spector MS, Xue W, et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach[J]. Cell, 2006, 125(7): 1253-1267.
|
[7] |
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版)[J]. 中华消化外科杂志, 2022, 21(2): 143-168.
|
[8] |
赵兵兵, 李梓涛, 胡伟东,等.肝细胞肝癌的早期诊断与精准治疗[J]. 岭南现代临床外科, 2018, 18(5): 593-598.
|
[9] |
程笑, 黄静, 李文飞, 等.微波消融治疗小肝癌的效果分析[J].中华肝脏病杂志, 2021, 29(11): 1059-1062.
|
[10] |
全亚宁, 商晓杰, 孟璇, 等. 实时超声造影和融合影像导航下微波消融与手术治疗小肝癌患者疗效比较[J]. 实用肝脏病杂志, 2020, 23(4): 581-584.
|
[11] |
Llovet JM, Chen Y, Wurmbach E, et al. A molecular signature to discriminate dysplastic nodules from early hepatocellular carcinoma in HCV cirrhosis[J]. Gastroenterology, 2006, 131(6): 1758-1767.
|
[12] |
席兆华. 肝癌射频消融治疗的并发症分析[Z]. 第7届全国疑难及重症肝病大会论文集[C]. 北京, 2013: 310-312.
|
[13] |
Radjenovic B, Sabo M, Šoltes L, et al. On efficacy of microwave ablation in the thermal treatment of an early-stage hepatocellular carcinoma[J]. Cancers, 2021, 13(22): 5784.
|
[14] |
Van ZF, Zulehner G, Petz M, et al. Epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Future Oncol, 2009, 5(8): 1169-1179.
|
[15] |
Yoshida DS, Kornek M, Ikenaga N, et al. Sublethal heat treatment promotes epithelial-mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma[J]. Hepatology, 2013, 58(5): 1667-1680.
|
[16] |
Kim HY, Min HK, Song HW, et al. Delivery of human natural killer cell-derived exosomes for liver cancer therapy: an in vivo study in subcutaneous and orthotopic animal models[J]. Drug Delivery, 2022, 29(1): 2897-2911.
|
[17] |
Wang XD, Peng JB, Zhou CY, et al. Potential therapies for residual hepatoblastoma following incomplete ablation treatment in a nude mouse subcutaneous xenograft model based on lncRNA and mRNA expression profiles[J]. Oncology Reports, 2020, 43(6): 1915-1927.
|
[18] |
张静, 刘彦仿, 杨守京, 等. 鼠源化抗肝癌免疫毒素的导向研究[J]. 肝胆外科杂志, 2003, 11(3): 223-226.
|
[19] |
孙迪, 杨麟, 沈宜, 等. 热应激小鼠肝癌细胞(H_(22))源Exosomes的抗肿瘤免疫机制[J]. 复旦学报(医学版), 2009, 36(6): 681-691.
|
[20] |
Ruzzenente A, Manzoni GD, Molfetta M, et al. Rapid progression of hepatocellular carcinoma after Radiofrequency Ablation[J]. World J Gastroenterol, 2004, 10(8): 1137-1140.
|
[21] |
Obara K, Matsumoto N, Okamoto M, et al. Insufficient radiofrequency ablation therapy may induce further malignant transformation of hepatocellular carcinoma[J]. Hepatology International, 2008, 2(1): 116-123.
|
[22] |
Wang X, Deng Q, Feng K, et al. Insufficient radiofrequency ablation promotes hepatocellular carcinoma cell progression via autophagy and the CD133 feedback loop[J]. Oncology Reports, 2018, 40(1): 241-251.
|
[23] |
Shi L, Wang J, Ding N, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy[J]. Nat Commun, 2019, 10(1): 5421.
|
[24] |
Ye W, Ma J, Wang F, et al. LncRNA MALAT1 regulates miR-144-3p to facilitate epithelial-mesenchymal transition of lens epithelial cells via the OS/NRF2/Notch1/snail pathway[J]. Oxid Med Cell Longev, 2020, 2020: 8184314.
|
[25] |
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy[J]. Cell Mol Life Sci, 2011, 68(18): 3033-3046.
|