切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2020, Vol. 08 ›› Issue (01) : 77 -82. doi: 10.3877/cma.j.issn.2095-5782.2020.01.015

所属专题: 文献

综述

磁粒子成像的临床前应用研究进展
张德景1, 李勇1, 占美晓1, 忻勇杰1, 赵炜1, 陆骊工1,()   
  1. 1. 519000 广东珠海,暨南大学附属珠海医院(珠海市人民医院)介入医学科
  • 收稿日期:2019-12-19 出版日期:2020-02-25
  • 通信作者: 陆骊工
  • 基金资助:
    科技部国家重点研发计划子课题(2017YFA0205203)

Advances in preclinical application of magnetic particle imaging

Dejing Zhang1, Yong Li1, Meixiao Zhan1, Yongjie Xin1, Wei Zhao1, Ligong Lu1,()   

  1. 1. Department of Interventional medicine, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Guangdong Zhuhai 519000, China
  • Received:2019-12-19 Published:2020-02-25
  • Corresponding author: Ligong Lu
  • About author:
    Corresponding author: Lu Ligong, Email:
引用本文:

张德景, 李勇, 占美晓, 忻勇杰, 赵炜, 陆骊工. 磁粒子成像的临床前应用研究进展[J]. 中华介入放射学电子杂志, 2020, 08(01): 77-82.

Dejing Zhang, Yong Li, Meixiao Zhan, Yongjie Xin, Wei Zhao, Ligong Lu. Advances in preclinical application of magnetic particle imaging[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2020, 08(01): 77-82.

磁粒子成像(magnetic particle imaging,MPI)是由核磁共振成像(magnetic resonance imaging,MRI)衍生而来的新一代分子影像技术。其采用复合组合方式的旋转可变梯度磁场,直接检测体内超顺磁性氧化铁纳米粒子(superparamagnetic iron oxide,SPIO),可以获得纳摩尔级的超高灵敏度成像。MPI具有高时空间分辨率、高灵敏度、无扫描深度限制且无电离辐射等特点,目前已应用于细胞示踪、血管成像以及肿瘤成像及治疗等临床前领域。自2005年出现以来,MPI在软件算法、硬件开发、示踪剂设计和临床前应用领域得到了快速的发展。文章在简述MPI历史及基本原理的基础上,对近年来MPI在细胞示踪、血管、肿瘤等临床前领域的研究进展进行了归纳与总结,并对MPI的临床转化前景进行了展望。

Magnetic Particle Imaging (MPI) is a new generation of molecular imaging technology derived from Magnetic Resonance Imaging (MRI).It adopted complex combinations of rotary variable gradient magnetic field that can directly detect the Superparamagnetic Iron Oxide nanoparticles (SPIO) in vivo with high sensitivity of the Moore level. MPI is characterized by high temporal spatial resolution, high sensitivity, no scanning depth limitation and no ionizing radiation, etc. It has been applied in cell tracer,angiography,tumor imaging and treatment and other preclinical fields. Since its emergence in 2005, MPI has developed rapidly in software algorithms, hardware development, tracer design, and preclinical applications. Therefore, on the basis of briefly describing the history and basic principles of MPI, this article would summarize the research progress of MPI in cell tracer, blood vessel, tumor and other preclinical fields in recent years, and prospect the clinical transformation of MPI.

表1 不同成像方式在细胞示踪上的比较[13,14,15,16,17,18]
[1]
Wu LC, Zhang Y, Steinberg G,et al. A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging[J]. AJNR Am J Neuroradiol, 2019, 40(2), 206-212.
[2]
Gleich B Weizenecker R Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature, 2005, 435(7046): 1214-1217.
[3]
Talebloo N, Gudi M, Robertson N,et al. Magnetic Particle Imaging: Current Applications in Biomedical Research[J]. J Magn Reson Imaging, 2019.
[4]
Bulte JWM Superparamagnetic iron oxides as MPI tracers:A primer and review of early applications[J]. Adv Drug Deliv Rev, 2019, 138: 293-301.
[5]
Borgert J, Schmidt JD, Schmale I,et al. Fundamentals and applications of magnetic particle imaging[J]. J Cardiovasc Comput Tomogr, 2012, 6(3): 149-153.
[6]
Lu M, Cohen MH, Rieves D,et al. FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease[J]. Am J Hematol, 2010, 85(5): 315-319.
[7]
Dhavalikar R, Hensley D, Maldonado-Camargo L,et al. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models[J]. J Phys D Appl Phys, 2016, 49(30).
[8]
Ferguson RM, Minard KR Krishnan KM Optimization of nanoparticle core size for magnetic particle imaging[J]. J Magn Magn Mater, 2009, 321(10): 1548-1551.
[9]
彭鹏,龙莉玲,Smith B,等. 磁粒子成像的发展与临床应用前景[J].中华放射学杂志,2019, 53(5): 426-430.
[10]
Kratz H, Eberbeck D, Wagner S,et al. Synthetic routes to magnetic nanoparticles for MPI[J].Biomed Tech (Berl), 2013, 58(6): 509-515.
[11]
Sun R, Li X, Liu M,et al. Advances in stem cell therapy for cardiovascular disease (Review)[J]. Int J Mol Med, 2016, 38(1): 23-29.
[12]
Kim SU de Vellis J Stem cell-based cell therapy in neurological diseases: a review[J]. J Neurosci Res, 2009, 87(10): 2183-2200.
[13]
Zheng B, von See MP, Yu E,et al. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo[J]. Theranostics, 2016, 6(3): 291-301.
[14]
Wang P, Goodwill PW, Pandit P, et al. Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models[J]. Quant Imaging Med Surg, 2018, 8(2): 114-122.
[15]
Fidler F, Steinke M, Kraupner A,et al. Stem Cell Vitality Assessment Using Magnetic Particle Spectroscopy[J]. IEEE Transactions on Magnetics, 2015, 51(2): 1-4.
[16]
Orendorff R, Peck AJ, Zheng B,et al. First in vivo traumatic brain injury imaging via magnetic particle imaging[J]. Phys Med Biol, 2017, 62(9): 3501-3509.
[17]
Gaudet JM, Makela AV Foster PJ Non-invasive detection and quantification of tumor-associated macrophage density with magnetic particle imaging[J]. Cancer Research, 2019, 79(13).
[18]
Zheng B, Vazin T, Goodwill PW,et al. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast[J]. Sci Rep, 2015, 5(14055.
[19]
Vaalma S, Rahmer J, Panagiotopoulos N,et al. Magnetic Particle Imaging (MPI): Experimental Quantification of Vascular Stenosis Using Stationary Stenosis Phantoms[J]. PLoS One, 2017, 12(1): e0168902.
[20]
Sedlacik J, Frolich A, Spallek J,et al. Magnetic Particle Imaging for High Temporal Resolution Assessment of Aneurysm Hemodynamics[J]. PLoS One, 2016, 11(8): e0160097.
[21]
Yu EY, Chandrasekharan P, Berzon R,et al. Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model[J]. ACS Nano, 2017, 11(12): 12067-12076.
[22]
Haegele J, Rahmer J, Gleich B,et al. Magnetic Particle Imaging: Visualization of Instruments for Cardiovascular Intervention[J].Radiology, 2012, 265(3): 933-938.
[23]
Herz S, Vogel P, Dietrich P,et al. Magnetic Particle Imaging Guided Real-Time Percutaneous Transluminal Angioplasty ina Phantom Model[J]. Cardiovasc Intervent Radiol, 2018, 41(7): 1100-1105.
[24]
Rahmer J, Wirtz D, Bontus C,et al. Interactive Magnetic Catheter Steering With 3-D Real-Time Feedback Using Multi-Color Magnetic Particle Imaging[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1449-1456.
[25]
Frangioni JV New technologies for human cancer imaging[J].J Clin Oncol, 2008, 26(24): 4012-4021.
[26]
Kydd J, Jadia R, Velpurisiva P,et al. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems[J]. Pharmaceutics, 2017, 9(4).
[27]
Yu EY, Bishop M, Zheng B,et al. Magnetic Particle Imaging:A Novel in Vivo Imaging Platform for Cancer Detection[J]. Nano Letters, 2017, 17(3):1648-1654.
[28]
Tomitaka A, Arami H, Gandhi S,et al. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging[J].Nanoscale, 2015, 7(40): 16890-16898.
[29]
Finas D, Baumann K, Sydow L,et al. Lymphatic Tissue and Superparamagnetic Nanoparticles - Magnetic Particle Imaging for Detection and Distribution in a Breast Cancer Model[J]. Biomed Tech (Berl), 2013, 58 Suppl 1.
[30]
Saxena V, Gonzalez-Gomez I Laug WE A noninvasive multimodal technique to monitor brain tumor vascularization[J].Phys Med Biol, 2007, 52(17): 5295-5308.
[31]
Périgo EA, Hemery G, Sandre O,et al. Fundamentals and advances in magnetic hyperthermia[J].Applied Physics Reviews, 2015, 2(4).
[32]
Kut C, Zhang Y, Hedayati M,et al. Preliminary study of injury from heating systemically delivered, nontargeted dextran-superparamagnetic iron oxide nanoparticles in mice[J].Nanomedicine (Lond), 2012, 7(11): 1697-1711.
[33]
Hensley D, Tay ZW, Dhavalikar R,et al. Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform[J]. Phys Med Biol, 2017, 62(9): 3483-3500.
[34]
Tay ZW, Chandrasekharan P, Chiu-Lam A,et al. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy[J].ACS Nano, 2018, 12(4): 3699-3713.
[35]
Rauwerdink AM, Hansen EW Weaver JB Nanoparticle temperature estimation in combined ac and dc magnetic fields[J].Phys Med Biol, 2009, 54(19): L51-55.
[36]
Murase K,Aoki M,Banura N,et al. Usefulness of magnetic particle imaging for monitoring the therapeutic effect of magnetic hyperthermia. (Ieee, 2015).
[37]
Kuboyabu T, Yabata I, Aoki M,et al. Magnetic Particle Imaging for Magnetic Hyperthermia Treatment: Visualization and Quantification of the Intratumoral Distribution and Temporal Change of Magnetic Nanoparticles <i>in Vivo</i&gt[J].Open Journal of Medical Imaging, 2016, 06(01): 1-15.
[38]
Zhou XY, Jeffris KE, Yu EY, et al. First in vivo magnetic particle imaging of lung perfusion in rats[J]. Phys Med Biol, 2017, 62(9): 3510-3522.
[39]
Gleich B Weizenecker J Tomographic imaging using the nonlinear response of magnetic particles[J]. Nature, 2005, 435(7046): 1214-1217.
[40]
Mason EE, Cooley CZ, Cauley SF,et al. Design analysis of an MPI human functional brain scanner[J]. Int J Magn Part Imaging, 2017, 3(1).
[41]
Graeser M, Thieben F, Szwargulski P,et al. Human-sized magnetic particle imaging for brain applications[J]. Nat Commun, 2019, 10(1): 1936.
[1] 王天成, 张云, 孙春旭, 王慧芬, 徐静, 李素红. 中华墨汁在宫颈癌前哨淋巴结活检示踪中的应用[J]. 中华妇幼临床医学杂志(电子版), 2006, 02(01): 23-25.
[2] 崔敏毅, 蔡华崧, 董帜, 刘依, 黄岗, 洪庆奋, 曾东林. 叶酸介导超顺磁性氧化铁纳米颗粒标记舌癌细胞的磁共振成像研究[J]. 中华口腔医学研究杂志(电子版), 2015, 09(02): 113-117.
[3] 杨正阳, 刘颂, 艾世超, 管文贤. 新型PET-CT探针在胃癌应用中的现状与进展[J]. 中华普外科手术学杂志(电子版), 2019, 13(02): 209-214.
[4] 叶飞龙, 杨冠英, 王伟. 对流增强给药治疗胶质母细胞瘤的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 287-292.
阅读次数
全文


摘要