切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2020, Vol. 08 ›› Issue (01) : 83 -88. doi: 10.3877/cma.j.issn.2095-5782.2020.01.016

所属专题: 文献

综述

镁基合金生物可降解支架的国内外研究进展
孔令华1, 贺迎坤1,(), 李天晓1,(), 张一林1, 何艳艳1, 朱世杰2, 关绍康2   
  1. 1. 450003 河南郑州,郑州大学人民医院介入中心脑血管病科、河南省人民医院、河南大学人民医院、河南省神经介入研发与应用工程研究中心
    2. 450003 河南郑州,郑州大学材料科学与工程学院
  • 收稿日期:2020-01-13 出版日期:2020-02-25
  • 通信作者: 贺迎坤, 李天晓
  • 基金资助:
    国家十三五重点研发计划(2016YFC1301700); 国家卫建委脑防委中国脑卒中高危人群干预和适宜技术研究及推广项目(GN-2016R0006,GN-2018R0007); 河南省科技攻关项目(162102310268); 河南省卫生科技攻关省部联合共建项目(SBGJ2018063); 河南省卫生健康科技英才海外研修工程项目(HWYX2019130); 河南大学一流学科培养项目(2019YLZDJL11)

The Research progress of biodegradable magnesium alloy scaffolds at home and abroad

Linghua Kong1, Yingkun He1,(), Tianxiao Li1,(), Yilin Zhang1, Yanyan He1, Shijie Zhu2, Shaokang Guan2   

  1. 1. Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Provincial Neurointerventional Engineering Research Center, Henan Zhengzhou 450003, China
    2. School of Materials Science and Engineering, Zhengzhou University, Henan Zhengzhou, 450003, China
引用本文:

孔令华, 贺迎坤, 李天晓, 张一林, 何艳艳, 朱世杰, 关绍康. 镁基合金生物可降解支架的国内外研究进展[J]. 中华介入放射学电子杂志, 2020, 08(01): 83-88.

Linghua Kong, Yingkun He, Tianxiao Li, Yilin Zhang, Yanyan He, Shijie Zhu, Shaokang Guan. The Research progress of biodegradable magnesium alloy scaffolds at home and abroad[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2020, 08(01): 83-88.

近年来,镁基合金生物可降解支架在血管领域的应用取得了很大进展。镁基合金作为一种生物降解材料,比铁基合金和锌基合金具有一定的优势。然而,镁基合金的降解速度太快,无法与组织愈合的速度相匹配,而且还表现出不均匀腐蚀的特性。因此,研究者们从支架的表面改性、锻造工艺和成分配比等方面优化支架生物金属特性,并且逐步运用到动物实验及临床研究。本综述主要围绕以下3个方面展开:镁基合金生物可降解支架的国内外发展历程;镁基合金生物可降解支架的特性;镁基合金生物可降解支架的研究热点。

In recent years, much progress has been made on the territory of biodegradable magnesium alloy scaffolds in Vascular system. As a biodegradable material, magnesium alloy scaffolds has certain advantages over iron base alloy and zinc base alloy. The degradation of magnesium is too rapid to match the rates of tissue healing and it exhibits the non-uniform corrosion mechanism.Therefore, researchers optimized the bimetallic properties of biodegradable magnesium alloy scaffolds from the surface modification, forging process and composition ratio. And scaffolds were applied to preclinical experiments and clinical research. This review focuses on the following topics: the development history at home and abroad and the characteristics of biodegradable magnesium alloy scaffolds. Furthermore, this review also covers research carried out in the field of development prospect of the stent.

[1]
Cournand A F. Control of the pulmonary circulation in man with some remarks on methodology[J]. Nobel lecture, 1956: 531.
[2]
Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty[J]. N Engl J Med. 1987, 316(12): 701-706.
[3]
Lange C, Storkebaum E, De Almodóvar C R, et al. Vascular endothelial growth factor: a neurovascular target in neurological diseases[J]. Nat Rev Neurol, 2016, 12(8): 439.
[4]
Nishio S, Kosuga K, Igaki K, et al. Long-term (> 10 years) clinical outcomes of first-in-human biodegradable poly-l-lactic acid coronary stents: Igaki-Tamai stents[J]. Circulation, 2012, 125(19): 2343-2353.
[5]
Dehghani P. Bioresorbable Polymers and Stent Devices[J].Curr Treat Options Cardiovasc Med, 2017, 19(2): 12.
[6]
Ali Z A, Gao R, Kimura T, et al. Three-year outcomes with the absorb bioresorbable scaffold: individual-patient-data meta-analysis from the ABSORB randomized trials[J]. Circulation, 2018, 137(5): 464-479.
[7]
Ellis S G, Kereiakes D J, Metzger D C, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease[J]. N Engl J Med, 2015, 373(20): 1905-1915.
[8]
Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan[J]. Eur Heart J, 2015, 36(47): 3332-3342.
[9]
Sabaté M, Windecker S, Iñiguez A, et al. Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial infarction—TROFI II trial[J]. Eur Heart J, 2015, 37(3): 229-240.
[10]
Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial[J]. J Am Coll Cardiol, 2015, 66(21): 2298-2309.
[11]
Arroyo D, Gendre G, Schukraft S, et al. Comparison of everolimus-and biolimus-eluting coronary stents with everolimus-eluting bioresorbable vascular scaffolds: two-year clinical outcomes of the EVERBIO II trial[J]. Int J Cardiol, 2017, 243: 121-125.
[12]
Serruys P W, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial[J]. The Lancet, 2015, 385(9962): 43-54.
[13]
Stone G W, Abizaid A, Onuma Y, et al. Effect of technique on outcomes following bioresorbable vascular scaffold implantation: analysis from the ABSORB trials[J]. J Am Coll Cardiol, 2017, 70(23): 2863-2874.
[14]
Stone G W, Granada J F. Very late thrombosis after bioresorbable scaffolds: cause for concern?[J]. J Am Coll Cardiol. 2015, 66(17):1915-1917.
[15]
甘佼弘,马晶,崔志琼,等. 生物可降解镁合金的全身毒性试验[J]. 中国老年学杂志,2018, 38(16): 4002-4005.
[16]
Gu X, Mao Z, Ye S H, et al. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents[J]. Colloids Surf B Biointerfaces, 2016, 144: 170-179..
[17]
Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?[J]. Heart, 2003, 89(6): 651-656.
[18]
Di Mario C, Griffiths H U W, Goktekin O, et al. Drug-eluting bioabsorbable magnesium stent[J].J Interv Cardiol, 2004, 17(6): 391-395.
[19]
Campos C, Muramatsu T, Iqbal J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease[J]. Int J Mol Sci, 2013, 14(12): 24492-24500.
[20]
Rapetto C, Leoncini M. Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives[J]. J Thorac Dis, 2017, 9(Suppl 9): S903.
[21]
Lasala J M, Cox D A, Dobies D, et al. Drug-eluting stent thrombosis in routine clinical practice: two-year outcomes and predictors from the TAXUS ARRIVE registries[J]. Circ Cardiovasc Interv, 2009, 2(4): 285-293.
[22]
Juwana YB, Rasoul S, Ottervanger JP, et al. Efficacy and safety of rapamycin as compared to paclitaxel-eluting stents: a meta-analysis[J]. J Invasive Cardiol. 2010, 22(7):312-316.
[23]
Grube E, Silber S, Hauptmann K E, et al. TAXUS I: six-and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions[J]. Circulation, 2003, 107(1): 38-42.
[24]
Wittchow E, Adden N, Riedmüller J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model[J]. EuroIntervention, 2013, 8(12): 1441-1450.
[25]
Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. The Lancet, 2013, 381(9869): 836-844.
[26]
Haude M, Erbel R, Erne P, et al. Safety and performance of the DRug-Eluting Absorbable Metal Scaffold (DREAMS) in patients with de novo coronary lesions: 3-year results of the prospective, multicentre, first-in-man BIOSOLVE-I trial[J]. EuroIntervention, 2016, 12: e160-6.
[27]
Haude M, Ince H, Tölg R, et al. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold (DREAMS 2G) in patients with de novo coronary lesions: 3-year clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial[J]. EuroIntervention, 2019, EIJ-D-18-01000.
[28]
Verheye S, Wlodarczak A, Montorsi P, et al. Safety and performance of a resorbable magnesium scaffold under real-world conditions: 12-month outcomes of the first 400 patients enrolled in the BIOSOLVE-IV registry[J]. EuroIntervention, 2019, EIJ-D-18-01058.
[29]
Felix C M, Vlachojannis G J, IJsselmuiden A J J, et al. Potentially increased incidence of scaffold thrombosis in patients treated with Absorb BVS who terminated DAPT before 18 months[J]. EuroIntervention, 2017, 13(2): e177-e184.
[30]
Chen C, Chen J, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy[J]. Biomaterials, 2019, 221: 119414.
[31]
Zhang X, Yuan G, Niu J, et al. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios[J]. J Mech Behav Biomed Mater, 2012, 9:153-162.
[32]
Mao L, Yuan G, Niu J, et al. In vitro degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy by hydrofluoric acid treatment[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(1): 242-250.
[33]
Niu J, Yuan G, Liao Y, et al. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(8): 4833-4841.
[34]
Shi Y, Zhang L, Chen J, et al. In vitro and in vivo degradation of rapamycin-eluting Mg-Nd-Zn-Zr alloy stents in porcine coronary arteries[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80: 1-6.
[35]
Mao L, Chen J, Zhang X, et al. A promising biodegradable magnesium alloy suitable for clinical vascular stent application[J]. Sci Rep, 2017, 7: 46343.
[36]
关绍康,王俊,王利国,等. 一种可生物降解血管支架用Mg-Zn-Y-Nd镁合金及其制备方法[P].中国专利,201110043303.8, 2011:
[37]
Wu Q, Zhu S, Wang L, et al. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application[J]. J Mech Behav Biomed Mater, 2012, 8: 1-7.
[38]
Liu J, Zheng B, Wang P, et al. Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application[J]. ACS Appl Mater Interfaces. 2016, 8(28): 17842-17858.
[39]
Liu J, Wang P, Chu C C, et al. Arginine-leucine based poly (ester urea urethane) coating for Mg-Zn-Y-Nd alloy in cardiovascular stent applications[J]. Colloids Surf B Biointerfaces, 2017, 159: 78-88.
[40]
Wlodarczak A, Garcia L A I, Karjalainen P P, et al. Magnesium 2000 postmarket evaluation: Guideline adherence and intraprocedural performance of a sirolimus-eluting resorbable magnesium scaffold[J]. Cardiovasc Revasc Med, 2019, 20(12): 1140-1145.
[41]
贺迎坤,李天晓,王子亮,等.非急性期颅内椎基底动脉闭塞介入再通的中长期随访研究[J].中华放射学杂志,2017, 51(2): 145-148.
[42]
张一林,贺迎坤,李天晓,等. 涂布介入器械的人血管内皮生长因子真核表达载体的构建[J]. 中华介入放射学电子杂志,2019, 7(1): 40-43.
[43]
Gu X N, Zheng Y F. A review on magnesium alloys as biodegradable materials[J]. Front Mater Sci, 2010, 4(2): 111-115.
[44]
Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion[J]. Prog Mater Sci, 2017, 89: 92-19
[1] 孙素, 肖玉鸿. 基质金属蛋白酶介导牙本质粘接界面的生物降解及其拮抗剂的研究进展[J]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 333-336.
[2] 陈新军, 郑若龙, 徐卓文, 杨增芯, 李伟章, 钱惠东, 蒋文龙, 张华. 药物球囊治疗冠状动脉支架内再狭窄的临床疗效[J]. 中华临床医师杂志(电子版), 2019, 13(09): 647-652.
[3] 刘赫, 贾建文, 钟红亮, 李荧, 孙永全. 球囊扩张支架成形术治疗椎动脉狭窄致后循环脑缺血的效果分析[J]. 中华介入放射学电子杂志, 2015, 03(04): 183-185.
[4] 陈猛, 孟润祺, 曹勇, 张金国. 冠状动脉支架内再狭窄的影像诊断与治疗研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 12-16.
[5] 魏广和, 宋峰, 张韶辉, 刘立新, 苏强, 王建军, 高振才, 张淑芳. miRNA-126在冠状动脉支架内再狭窄中的表达及意义[J]. 中华诊断学电子杂志, 2017, 05(02): 80-85.
[6] 佟志勇, 刘源, 潘起晨, 邹存义, 程德殊, 赵旭东, 张劲松, 金友贺, 娄喆. 颈动脉内膜切除补片成形术治疗支架内再狭窄的长期疗效分析[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 398-407.
阅读次数
全文


摘要