[1] |
Hage AN, Chick JFB, Srinivasa RN, et al. Treatment of venous malformations: the data, where we are, and how it is done[J].Drug Des Devel Ther, 2018, 21(2): 45-54.
|
[2] |
王德明, 苏立新, 范新东. 静脉畸形中国专家共识[J]. 介入放射学杂志, 2019, 28(4): 307-311.
|
[3] |
Brouillard P, Limaye N, Boon LM, et al. Disorders of the venous system // Pyeritz RE, Korf BR, Grody WW. Emery and Rimoin's principles and practice of medical genetics and genomics[M]. 7th ed. San Diego: Academic Press, 2019: 251-260.
|
[4] |
Dasgupta R, Patel M. Venous malformations[C]//Seminars in pediatric surgery. WB Saunders, 2014, 23(4): 198-202.
|
[5] |
Boon LM, Mulliken JB, Enjolras O, et al. Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities[J]. Arch Dermatol, 2004,140(8): 971-976.
|
[6] |
Boscolo E, Limaye N, Huang L, et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects[J]. J Clin Invest, 2015, 125: 3491-3504.
|
[7] |
Limaye N, Boon LM, Vikkula M. From germline towards somatic mutations in the pathophysiology of vascular anomalies[J]. Hum Mol Genet, 2009, 18(R1): R65-R74.
|
[8] |
Lohela M, Bry M, Tammela T, et al. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis[J]. Curr Opin Cell Biol, 2009, 21(2): 154-165.
|
[9] |
Castillo SD, Tzouanacou E, Zaw-Thin M, et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans[J]. Sci Transl Med, 2016, 8(332): 8(332): 332ra43.
|
[10] |
Castel P, Carmona FJ, Grego-Bessa J, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations[J].Science translational medicine, 2016, 8(332): 332ra42.
|
[11] |
Soblet J, Kangas J, Nätynki M, et al. Blue rubber bleb nevus(BRBN) syndrome is caused by somatic TEK (TIE2) mutations[J].J Invest Dermatol, 2017, 137(1): 207-216.
|
[12] |
Li X, Cai Y, Goines J, et al. Ponatinib combined with rapamycin causes regression of murine venous malformation[J]. Arterioscler Thromb Vasc Biol, 2019, 39(3): 496-512.
|
[13] |
Di Blasio L, Puliafito A, Gagliardi PA, et al. PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations[J]. Cell Death Dis, 2018, 9(2): 45.
|
[14] |
Limaye N, Wouters V, Uebelhoer M, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations[J]. Nat Genet, 2009, 41(1): 118-124.
|
[15] |
Nguyen HL, Boon LM, Vikkula M. Genetics of vascular anomalies[J]. Semin Pediatr Surg, 2020, 29(5): 150967.
|
[16] |
Seront E, Van Damme A, Boon L M, et al. Rapamycin and treatment of venous malformations[J]. Curr Opin Hematol, 2019,26(3): 185-192.
|
[17] |
Nätynki M, Kangas J, Miinalainen I, et al. Common and specific effects of TIE2 mutations causing venous malformations[J]. Hum Mol Genet, 2015, 24(22): 6374-6389.
|
[18] |
Dekeuleneer V, Seront E, Van Damme A, et al. Theranostic advances in vascular malformations[J]. J Invest Dermatol, 2020,140(4): 756-763.
|
[19] |
Remy A, Tran TH, Dubois J, et al. Repurposing alpelisib, an anticancer drug, for the treatment of severe TIE2-mutated venous malformations: preliminary pharmacokinetics and pharmacodynamic data[J]. Pediatr Blood Cancer, 2022, 69(10): e29897.
|
[20] |
Soblet J, Limaye N, Uebelhoer M, et al. Variable somatic TIE2 mutations in half of sporadic venous malformations[J]. Mol Syndromol, 2013, 4(4): 179-183.
|
[21] |
Limaye N, Kangas J, Mendola A, et al. Somatic activating PIK3CA mutations cause venous malformation[J]. Am J Hum Genet, 2015, 97(6): 914-921.
|
[22] |
Uebelhoer M, Nätynki M, Kangas J, et al. Venous malformationcausative TIE2 mutations mediate an AKT-dependent decrease in PDGFB[J]. Hum Mol Genet, 2013, 22(17): 3438-3448.
|
[23] |
Luks VL, Kamitaki N, Vivero MP, et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA[J]. The Journal of pediatrics, 2015,166(4): 1048-1054. e5.
|
[24] |
Van Damme A, Seront E, Dekeuleneer V, et al. New and emerging targeted therapies for vascular malformations[J]. Am J Clin Dermatol, 2020, 21(5): 657-668.
|
[25] |
Hammill AM, Wentzel MS, Gupta A, et al. Sirolimus for the treatment of complicated vascular anomalies in children[J].Pediatr Blood Cancer, 2011, 57(6): 1018-1024.
|
[26] |
Nadal M, Giraudeau B, Tavernier E, et al. Efficacy and safety of mammalian target of rapamycin inhibitors in vascular anomalies: a systematic review[J]. Acta Derm Venereol, 2016, 96(4): 448-452.
|
[27] |
Triana P, Dore M, Cerezo VN, et al. Sirolimus in the treatment of vascular anomalies[J]. Eur J Pediatr Surg, 2017, 27(1): 086-090.
|
[28] |
Mack JM, Verkamp B, Richter GT, et al. Effect of sirolimus on coagulopathy of slow-flow vascular malformations[J]. Pediatr Blood Cancer, 2019, 66(10): e27896.
|
[29] |
Ji Y, Chen S, Yang K, et al. A prospective multicenter study of sirolimus for complicated vascular anomalies[J]. J Vasc Surg,2021, 74(5): 1673-1681. e3.
|
[30] |
Seront E, Van Damme A, Legrand C, et al. Preliminary results of the European multicentric phase Ⅲ trial regarding sirolimus in slow-flow vascular malformations[J]. JCI insight, 2023, 8(21):e173095.
|
[31] |
Ventura-Aguiar P, Campistol JM, Diekmann F. Safety of mTOR inhibitors in adult solid organ transplantation[J]. Expert Opin Drug Saf, 2016, 15(3): 303-319.
|
[32] |
MacDonald AS. A worldwide, phase Ⅲ, randomized, controlled,safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts[J]. Transplantation, 2001, 71(2): 271-280.
|
[33] |
Augustine JJ, Bodziak KA, Hricik DE. Use of sirolimus in solid organ transplantation[J]. Drugs, 2007, 67(3): 369-391.
|
[34] |
Hammer J, Seront E, Duez S, et al. Sirolimus is efficacious in treatment for extensive and/or complex slow-flow vascular malformations: a monocentric prospective phase Ⅱ study[J].Orphanet J Rare Dis, 2018, 13(1): 1-13.
|
[35] |
Markham A. Alpelisib: first global approval[J]. Drugs, 2019,79(11): 1249-1253.
|
[36] |
Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers[J]. Br J Cancer, 2006, 94(4): 455-459.
|
[37] |
André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. N Engl J Med, 2019, 380(20): 1929-1940.
|
[38] |
Mayer IA, Abramson VG, Formisano L, et al. A phase Ⅰb study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2- metastatic breast cancer[J]. Clin Cancer Res, 2017,23(1): 26-34.
|
[39] |
Singh S, Bradford D, Li X, et al. FDA approval summary: alpelisib for PIK3CA-related overgrowth spectrum[J]. Clin Cancer Res,2024, 30(1): 23-28.
|
[40] |
Sterba M, Pokorna P, Faberova R, et al. Targeted treatment of severe vascular malformations harboring PIK3CA and TEK mutations with alpelisib is highly effective with limited toxicity[J].Sci Rep,2023, 13(1): 10499.
|
[41] |
Jauhiainen S, Ilmonen H, Vuola P, et al. ErbB signaling is a potential therapeutic target for vascular lesions with fibrous component[J]. Elife, 2023, 12: e82543.
|