[1] |
Oliver G, Kipnis J, Randolph GJ, et al. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease[J]. Cell, 2020, 182(2): 270-296.
|
[2] |
Das A, Goyal A, Sangwan A, et al. Vascular anomalies:nomenclature, classification, and imaging algorithms[J]. Acta Radiol, 2023, 64(2): 837-849.
|
[3] |
Mäkinen T, Boon LM, Vikkula M, et al. Lymphatic malformations:genetics, mechanisms and therapeutic strategies[J]. Circ Res,2021, 129(1): 136-154.
|
[4] |
François M, Short K, Secker GA, et al. Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice[J]. Dev Biol, 2012,364(2): 89-98.
|
[5] |
Deng Y, Zhang X, Simons M. Molecular controls of lymphatic VEGFR3 signaling[J]. Arterioscler Thromb Vasc Biol, 2015,35(2): 421-429.
|
[6] |
Korhonen EA, Murtomäki A, Jha SK, et al. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression[J]. J Clin Invest, 2022, 132(15): e155478.
|
[7] |
Srinivasan RS, Escobedo N, Yang Y, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors[J]. Genes & Development, 2014,28(19): 2175.
|
[8] |
Lin FJ, Chen X, Qin J, et al. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development[J]. J Clin Invest, 2010, 120(5):1694-1707.
|
[9] |
Cermenati S, Moleri S, Neyt C, et al. Sox18 genetically interacts with VegfC to regulate lymphangiogenesis in zebrafish[J].Arterioscler Thromb Vasc Biol, 2013, 33(6): 1238-1247.
|
[10] |
Hernández Vásquez MN, Ulvmar MH, González-Loyola A, et al. Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels[J]. EMBO J, 2021, 40(12): e107192.
|
[11] |
Kazenwadel J, Betterman KL, Chong CE, et al. GATA2 is required for lymphatic vessel valve development and maintenance[J]. J Clin Invest, 2015, 125(8): 2979-2994.
|
[12] |
Bálint L, Ocskay Z, Deák BA, et al. Lymph flow induces the postnatal formation of mature and functional meningeal lymphatic vessels[J]. Front Immunol, 2019, 10: 3043.
|
[13] |
Sweet DT, Jiménez JM, Chang J, et al. Lymph flow regulates collecting lymphatic vessel maturation in vivo[J]. J Clin Invest,2015, 125(8): 2995-3007.
|
[14] |
Kim H, Kim M, Im SK, et al. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes[J]. Lab Anim Res, 2018, 34(4): 147-159.
|
[15] |
Venot Q, Blanc T, Rabia SH, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome[J]. Nature, 2018,558(7711): 540-546.
|
[16] |
Srinivasan RS, Geng X, Yang Y, et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells[J].Genes Dev, 2010, 24(7): 696-707.
|
[17] |
Song E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours[J]. Nature,2020, 577(7792): 689-694.
|
[18] |
Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway[J]. Mol Biosyst, 2015, 11(7): 1946-1954.
|
[19] |
Rodriguez-Laguna L, Agra N, Ibañez K, et al. Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly[J]. J Exp Med, 2019, 216(2): 407-418.
|
[20] |
Blesinger H, Kaulfuß S, Aung T, et al. PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations[J]. PLOS ONE, 2018, 13(7): e0200343.
|
[21] |
Zhou F, Chang Z, Zhang L, et al. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development[J]. Am J Pathol, 2010, 177(4): 2124-2133.
|
[22] |
Boscolo E, Pastura P, Glaser K, et al. Signaling pathways and inhibitors of cells from patients with kaposiform lymphangiomatosis[J]. Pediatr Blood Cancer, 2019, 66(8):e27790.
|
[23] |
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update[J]. Physiol Rev, 2012, 92(2): 689-737.
|
[24] |
Deng Y, Atri D, Eichmann A, et al. Endothelial ERK signaling controls lymphatic fate specification[J]. J Clin Invest, 2013,123(3): 1202-1215.
|
[25] |
Yu P, Tung JK, Simons M. Lymphatic fate specification: an ERK-controlled transcriptional program[J]. Microvasc Res, 2014, 96:10-15.
|
[26] |
Dellinger MT, Brekken RA. Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium[J]. PLoS One, 2011, 6(12):e28947.
|
[27] |
Ichise T, Yoshida N, Ichise H. H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice[J]. Development,2010, 137(6): 1003-1013.
|
[28] |
Frye M, Taddei A, Dierkes C, et al. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program[J]. Nat Commun, 2018, 9(1):1511.
|
[29] |
González-Loyola A, Bovay E, Kim J, et al. FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure[J]. Sci Adv, 2021, 7(29):eabf4335.
|
[30] |
Sabine A, Bovay E, Demir CS, et al. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature[J]. J Clin Invest, 2015,125(10): 3861-3877.
|
[31] |
Norden PR, Sabine A, Wang Y, et al. Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation[J]. Elife, 2020, 9: e53814.
|
[32] |
Bos FL, Caunt M, Peterson-Maduro J, et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo[J]. Circ Res, 2011, 109(5): 486-491.
|
[33] |
Sheppard SE, March ME, Seiler C, et al. Lymphatic disorders caused by mosaic, activating KRAS variants respond to MEK inhibition[J]. JCI Insight, 2023, 8(9): e155888.
|
[34] |
Barclay SF, Inman KW, Luks VL, et al. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis[J].Genet Med, 2019, 21(7): 1517-1524.
|
[35] |
Foster JB, Li D, March ME, et al. Kaposiform lymphangiomatosis effectively treated with MEK inhibition[J]. EMBO Mol Med,2020, 12(10): e12324.
|
[36] |
Kalwani NM, Rockson SG. Management of lymphatic vascular malformations: a systematic review of the literature[J]. J Vasc Surg Venous Lymphat Disord, 2021, 9(4): 1077-1082.
|
[37] |
Hori Y, Ozeki M, Hirose K, et al. Analysis of mTOR pathway expression in lymphatic malformation and related diseases[J].Pathology International, 2020, 70(6): 323-329.
|
[38] |
Luo Y, Liu L, Rogers D, et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression.[J].Neoplasia, 2012, 14(3): 228-237.
|
[39] |
Ozeki M, Nozawa A, Yasue S, et al. The impact of sirolimus therapy on lesion size, clinical symptoms, and quality of life of patients with lymphatic anomalies[J]. Orphanet Journal of Rare Diseases, 2019, 14(1): 141.
|
[40] |
Maruani A, Tavernier E, Boccara O, et al. Sirolimus (Rapamycin)for slow-flow malformations in children[J]. JAMA Dermatol,2021, 157(11): 1-10.
|
[41] |
Adams DM, Trenor CC, Hammill AM, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies[J].Pediatrics, 2016, 137(2): e20153257.
|
[42] |
André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. N Engl J Med, 2019, 380(20): 1929-1940.
|
[43] |
Delestre F, Venot Q, Bayard C, et al. Alpelisib administration reduced lymphatic malformations in a mouse model and in patients[J]. Sci Transl Med, 2021, 13(614): eabg0809.
|
[44] |
Wenger TL, Ganti S, Bull C, et al. Alpelisib for the treatment of PIK3CA-related head and neck lymphatic malformations and overgrowth[J]. Genet Med, 2022, 24(11): 2318-2328.
|
[45] |
Al-Jundi M, Thakur S, Gubbi S, et al. Novel targeted therapies for metastatic thyroid cancer-a comprehensive review[J]. Cancers(Basel), 2020, 12(8): 2104.
|
[46] |
Homayun-Sepehr N, McCarter AL, Helaers R, et al. KRAS-driven model of Gorham-Stout disease effectively treated with trametinib[J]. JCI Insight, 2021, 6(15): e149831.
|
[47] |
Manevitz-Mendelson E, Leichner GS, Barel O, et al. Somatic NRAS mutation in patient with generalized lymphatic anomaly[J].Angiogenesis, 2018, 21(2): 287-298.
|
[48] |
Li D, March ME, Gutierrez-Uzquiza A, et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor[J]. Nat Med, 2019, 25(7): 1116-1122.
|
[49] |
Chowers G, Abebe-Campino G, Golan H, et al. Treatment of severe Kaposiform lymphangiomatosis positive for NRAS mutation by MEK inhibition[J]. Pediatr Res, 2023,94(6): 1911-1915.
|