切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2025, Vol. 13 ›› Issue (04) : 344 -349. doi: 10.3877/cma.j.issn.2095-5782.2025.04.011

神经介入

血清S100、NSE联合IL-1β对脑梗死机械取栓术后脑损伤及预后评估
张伟东, 谭斯奇, 马王志, 崔中馨, 李永宁()   
  1. 116011 辽宁大连,大连医科大学附属第一医院急诊科
  • 收稿日期:2025-05-06 出版日期:2025-11-25
  • 通信作者: 李永宁
  • 基金资助:
    辽宁省医学教育研究项目(2022-N004-12)

Combined Serum S100, NSE, and IL-1β for the Evaluation of Brain Injury and Prognosis After Mechanical Thrombectomy in Cerebral Infarction

Weidong Zhang, Siqi Tan, Wangzhi Ma, Zhongxin Cui, Yongning Li()   

  1. The First Affiliated Hospital of Dalian Medical University, Emergency Department, Dalian 116011, China
  • Received:2025-05-06 Published:2025-11-25
  • Corresponding author: Yongning Li
引用本文:

张伟东, 谭斯奇, 马王志, 崔中馨, 李永宁. 血清S100、NSE联合IL-1β对脑梗死机械取栓术后脑损伤及预后评估[J/OL]. 中华介入放射学电子杂志, 2025, 13(04): 344-349.

Weidong Zhang, Siqi Tan, Wangzhi Ma, Zhongxin Cui, Yongning Li. Combined Serum S100, NSE, and IL-1β for the Evaluation of Brain Injury and Prognosis After Mechanical Thrombectomy in Cerebral Infarction[J/OL]. Chinese Journal of Interventional Radiology(Electronic Edition), 2025, 13(04): 344-349.

目的

探究神经元特异性烯醇化醇(neuron specific enolase, NSE)、S100钙结合蛋白(S100 calcium-binding protein, S100)联合白细胞介素(interleukin,IL)-1β与脑梗死机械取栓术后脑损伤严重程度及预后的关系。

方法

收集2023年9月至2025年1月大连医科大学附属第一院急诊科急性脑梗死机械取栓术后患者60例,并将患者分为存活组及死亡组。记录并比较2组患者性别、年龄、计算机断层扫描(computed tomography, CT)影像结果、梗死部位、S100、NSE、IL-1β、白细胞总数等数据,并对出院患者28 d行电话随访。采用Logistic回归分析评估患者死亡相关风险因素。建立受试者工作特征(receiver operating characteristic,ROC)曲线并研究各变量对患者死亡的预测能力。采用Spearman相关系数分析各变量与梗死体积相关性。

结果

相对于存活组,死亡组IL-1β、S100、NSE值更高,差异有统计学意义(P<0.05)。单因素Logistic回归分析显示,IL-1β、S100、NSE与患者28 d预后转归相关(P<0.05),三者OR值均大于1,是患者28 d死亡的危险因素。通过建立ROC曲线结果显示,IL-1β、S100、NSE及三者联合对患者28 d死亡均具有预测价值。Spearman相关系数分析结果显示IL-1β、S100、NSE与梗死体积大小呈正相关,随着梗死体积增大,IL-1β、S100、NSE呈现升高趋势。

结论

血清IL-1β、NSE、S100含量与急性脑梗死机械取栓术后患者28天死亡密切相关,可预测患者预后。同时血清IL-1β、NSE、S100含量与急性脑梗死机械取栓术后脑梗死体积大小呈正相关,随着脑梗死体积增大其含量明显升高;反之,其含量越低提示脑梗死体积越小。

Objective

To investigate the relationship between serum levels of neuron-specific enolase (NSE), S100 protein, and interleukin-1β (IL-1β) with the severity of brain injury and prognosis in patients after mechanical thrombectomy for cerebral infarction.

Methods

A total of 60 patients with acute cerebral infarction who underwent mechanical thrombectomy in the Emergency Department of the First Affiliated Hospital of Dalian Medical University between September 2023 and January 2025 were retrospectively analyzed. Clinical data collected included gender, age, CT imaging results, infarct location, serum levels of S100, NSE, IL-1β, and leukocyte count. Patients were followed up by telephone for 28 days after discharge. Group comparisons were performed using t-tests for normally distributed data and rank-sum tests for non-normally distributed data. One-way ANOVA was used for multi-group comparisons. Logistic regression was applied to identify risk factors for mortality. Receiver operating characteristic (ROC) curve analysis assessed the predictive performance of each biomarker for 28-day mortality. Spearman correlation analysis was used to evaluate associations between biomarker levels and infarct volume.

Results

IL-1β, S100, and NSE levels were significantly higher in the death group compared with the survival group (P<0.05). Univariate logistic regression analysis showed that elevated IL-1β, S100, and NSE were significantly associated with 28-day mortality (P<0.05), with odds ratios greater than 1, indicating they were independent risk factors. ROC curve analysis demonstrated that IL-1β, S100, NSE, and their combination had predictive value for 28-day mortality, with favorable AUC values. Spearman correlation analysis indicated that serum IL-1β, S100, and NSE levels were positively correlated with infarct volume; higher levels corresponded to larger infarct size.

Conclusion

Serum IL-1β, NSE, and S100 are closely associated with short-term prognosis in patients after mechanical thrombectomy for acute cerebral infarction. Elevated levels predict higher 28-day mortality and larger infarct volume, suggesting their utility as biomarkers for early prognostic evaluation.

表1 2组患者一般资料比较
图1 IL-1β、S100、NSE对28 d死亡预测ROC曲线 IL-1β:白细胞介素1β;S100:S100钙结合蛋白;NSE:神经元特异性烯醇化酶;Com:三者联合;ROC曲线:受试者工作特征曲线。
表2 Logistic回归分析患病28 d死亡的相关因素
图2 IL-1β、S100、NSE与梗死体积的相关性 2A:梗死体积与IL-1β相关性;2B:梗死体积与S100相关性;2C:梗死体积与MSE相关性。IL-1β:白细胞介素1β;S100:S100钙结合蛋白;NSE:神经元特异性烯醇化酶。
[1]
Du X, Liu Q, Li Q, et al. Prognostic value of cerebral infarction coefficient in patients with massive cerebral infarction[J]. Clin Neurol Neurosurg, 2020, 196: 106009.
[2]
Li F, Yang L, Yang R, et al. Ischemic stroke in young adults of Northern China: characteristics and risk factors for recurrence[J]. Eur neurol, 2017, 77(3-4): 115-122.
[3]
Yahya T, Jilani M H, Khan S U, et al. Stroke in young adults: current trends, opportunities for prevention and pathways forward[J]. Am J Prev Cardiol, 2020, 3: 100085.
[4]
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: results from a nationwide population-based survey of 480 687 adults[J]. Circulation, 2017, 135(8): 759-771.
[5]
Hasan T F, Hasan H, Kelley R E. Overview of acute ischemic stroke evaluation and management[J]. Biomedicines, 2021, 9(10): 1486.
[6]
Dong X, Xu G, Song Y, et al. Comparative study on treatment of acute cerebral infarction between mechanical thrombectomy by micro catheter and thrombectomy by Solitaire AB stent[J]. Medicine, 2022, 101(14): e28968.
[7]
Liu Y, Hong Z, Li Y, et al. Effect of intravenous thrombolysis combined with mechanical thrombectomy on neurological function and short-term prognosis of patients with acute cerebral infarction[J]. Am J Transl Res, 2022, 14(4): 2376.
[8]
Zhao Q S, Li W, Li D, et al. Clinical treatment efficiency of mechanical thrombectomy combined with rhPro-UK thrombolysis for acute moderate/severe cerebral infarction[J]. Eur Rev Med Pharmacol Sci, 2018, 22(17): 5740-5746.
[9]
Patil S, Rossi R, Jabrah D, et al. Detection, diagnosis and treatment of acute ischemic stroke: current and future perspectives[J]. Front Med Technol, 2022, 4: 748949.
[10]
Zhou S, Bao J, Wang Y, et al. S100β as a biomarker for differential diagnosis of intracerebral hemorrhage and ischemic stroke[J]. Neurol Res, 2016, 38(4): 327-332.
[11]
Choi J I, Ha S K, Lim D J, et al. S100ß, matrix metalloproteinase-9, D-dimer, and heat shock protein 70 are serologic biomarkers of acute cerebral infarction in a mouse model of transient MCA occlusion[J]. J Korean Neurosurg Soc, 2018, 61(5): 548-558.
[12]
Floerchinger B, Philipp A, Camboni D, et al. NSE serum levels in extracorporeal life support patients—Relevance for neurological outcome?[J]. Resuscitation, 2017, 121: 166-171.
[13]
Li K, Jia J, Wang Z F, et al. Elevated serum levels of NSE and S-100β correlate with increased risk of acute cerebral infarction in Asian populations[J]. Med Sci Monit, 2015, 21: 1879.
[14]
Yuan X, Wang J, Wang D, et al. NSE, S100B and MMP9 expression following reperfusion after carotid artery stenting[J]. Curr Neurovasc Res, 2019, 16(2): 129-134.
[15]
Kanavaki A, Spengos K, Moraki M, et al. Serum levels of S100b and NSE proteins in patients with non-transfusion-dependent thalassemia as biomarkers of brain ischemia and cerebral vasculopathy[J]. Int J Mol Sci, 2017, 18(12): 2724.
[16]
Liu X, Bai M, Fan L, et al. Serum 4-hydroxynonenal associates with the recurrence of patients with primary cerebral infarction[J]. Front Cell Neurosci, 2022, 16: 998512.
[17]
Wei F, Chunli W, Kui L I U. Exploration of epidemiological characteristics for the occurrence of stroke in one chronic demonstration Area of Zhejiang Province in China: a retrospective study from 2009-2015[J]. Iran J Public Health, 2020, 49(3): 503-511.
[18]
Wu S, Wu B O, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405.
[19]
Shang Y X, Yan L F, Cornett E M, et al. Incidence of cerebral infarction in Northwest China from 2009 to 2018[J]. Cureus, 2021, 13(8): e17576.
[20]
Hu J, Ai M, Xie S, et al. NSE and S100β as serum alarmins in predicting neurological outcomes after cardiac arrest[J]. Sci Rep, 2024, 14(1): 25539.
[21]
Haupt W F, Chopan G, Sobesky J, et al. Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke[J]. J Neurophysiol, 2016, 115(3): 1273-1278.
[22]
Park D W, Park S H, Hwang S K. Serial measurement of S100B and NSE in pediatric traumatic brain injury[J]. Childs Nerv Syst, 2019, 35(2): 343-348.
[23]
Xu W W, Cheng Y X, An N, et al. Elevated serum miR-142-5p correlates with ischemic lesions and both NSE and S100β in ischemic stroke patients[J]. Open Med (Wars), 2024, 19(1): 20241015.
[24]
Liao Z, Zhu Q, Huang H. Involvement of IL-1β-mediated necroptosis in neurodevelopment impairment after neonatal sepsis in rats[J]. Int J Mol Sci, 2023, 24(19): 14693.
[25]
Busch K, Kny M, Huang N, et al. Inhibition of the NLRP3/IL‐1β axis protects against sepsis‐induced cardiomyopathy[J]. J Cachexia Sarcopenia Muscle, 2021, 12(6): 1653-1668.
[26]
Hatipoğlu M, Daltaban Ö, Uğur S, et al. B cell depletion in patients with rheumatoid arthritis is associated with reduced IL-1β in GCF[J]. Clin Oral Investig, 2022, 26(6): 4307-4313.
[27]
Chen J, Wu W, Zhang M, et al. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice[J]. Int Immunopharmacol, 2019, 70: 274-283.
[28]
Cano-Cano F, Gómez-Jaramillo L, Ramos-García P, et al. IL-1β implications in type 1 diabetes mellitus progression: systematic review and meta-analysis[J]. J Clin Med, 2022, 11(5): 1303.
[29]
Gu X, Wu H, Xie Y, et al. Caspase-1/IL-1β represses membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1 in Alzheimer's disease[J]. Mol Med, 2021, 27(1): 1-11.
[30]
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges[J]. Lancet Neurol, 2010, 9(7): 689-701.
[1] 梁章荣, 梁伟伟, 周妙, 黄尚明, 雷俊娜, 刘亚丽, 李旷怡, 张英俭. 急性脑梗死并发吸入性肺炎的危险因素及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 268-271.
[2] 朱丽臻, 范文萃, 李梦瑶, 李丽, 张月, 石艳红. 外周血NLRP3、IL-18和IL-1β在肺炎支原体肺炎患儿中的表达及检测意义[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 860-863.
[3] 孙顗淼, 张颖. 糖尿病患者急性脑梗死取栓术后发生对比剂肾病的影响因素及预测模型建立[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 188-194.
[4] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[5] 张元清, 杨婉莹, 朱健伟. 以急性脑梗死为首发表现的单纯疱疹病毒性脑炎一例报道[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(03): 187-190.
[6] 马丽. CT灌注联合血管成像预测急性脑梗死患者近期神经功能预后的价值分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 229-234.
[7] 许秀兰, 朱建建. 血压变异性与伴H型高血压的急性脑梗死患者预后不良的临床关系分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 199-204.
[8] 赵倩, 刘文超, 李玺琳, 章邱东. 老年急性脑梗死诱发胃肠损伤的风险因素分析及模型构建[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 213-217.
[9] 季鹏, 郭言言, 王超. CT灌注成像联合CT血管造影对TIA患者进展为急性脑梗死的预测[J/OL]. 中华介入放射学电子杂志, 2023, 11(02): 128-132.
[10] 潘鑫, 黄晓云, 王超, 顾慧, 唐加波, 王鹏, 崔恒熙, 李政. 院前亚低温结合院内溶栓救治急性脑梗死的效果[J/OL]. 中华卫生应急电子杂志, 2024, 10(03): 145-148.
[11] 冯欣, 尤素伟, 史晓梅, 王相斌, 巩巧丽, 王俊英. 血清VEGF-A、HIF-1α、MIF水平与急性脑梗死并发脑心综合征的关联性研究[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 213-219.
[12] 克地尔牙·马合木提, 胡波, 杨琼, 闫素, 胡岚卿, 高沛沛, 姚恩生. 依达拉奉右莰醇对急性脑梗死后认知功能障碍的疗效观察[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 459-466.
[13] 李洪远, 董书宇, 鹿寒冰. 血清Hcy、sdLDL-C、Lp-PLA2水平对短暂性脑缺血发作进展为急性脑梗死的预测效能[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 40-48.
[14] 张华纲, 王小倩, 张晨, 傅瑜, 李小刚, 樊东升, 王悦, 石菊, 毕书红. 急性脑梗死患者住院费用的趋势及其影响因素的研究——基于北京市某三甲医院的分析[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(06): 557-564.
[15] 朱敏, 李法强. 血清GFAP、UCH-L1联合VILIP-1水平对急性脑梗死神经功能预后不良的预测研究[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(05): 452-457.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?