切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (04) : 374 -379. doi: 10.3877/cma.j.issn.2095-5782.2024.04.015

综述

淋巴管畸形分子机制的研究进展
陈秋怡1, 林熙1, 刘珍银1,()   
  1. 1.510623 广东广州,广州医科大学附属妇女儿童医疗中心介入血管瘤科
  • 收稿日期:2024-04-18 出版日期:2024-11-25
  • 通信作者: 刘珍银
  • 基金资助:
    广州医科大学科研提升项目(02-410-2302148XM)

Advances in the molecular mechanism of lymphatic malformations

Qiuyi Chen1, Xi Lin1, Zhenyin Liu1,()   

  1. 1.Department of Interventional Hemangioma,Guangzhou Women and Children's Medical Centre,Guangzhou Medical University,Guangdong Guangzhou 510623,China
  • Received:2024-04-18 Published:2024-11-25
  • Corresponding author: Zhenyin Liu
引用本文:

陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.

Qiuyi Chen, Xi Lin, Zhenyin Liu. Advances in the molecular mechanism of lymphatic malformations[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(04): 374-379.

淋巴管畸形(lymphatic malformation,LM)是一种罕见的先天性淋巴管发育异常。根据其临床和组织学特征,可分为大囊型、微囊型或混合型。LM生长速度相对缓慢,几乎不会自然消退。目前,LM的研究焦点已经转向药物治疗,特别是针对其基因调控的靶向药物。近年来,已发现PIK3CA、TEK、GATA2、CCBE1等多种基因突变与LM存在紧密关联,这为分子诊断和靶向治疗提供了新思路。本文旨在深入探讨LM的发病机制,并结合当前药物治疗的研究进展,以提高对LM分子机制的理解,为临床治疗提供更有针对性的用药指导。

Lymphatic malformation (LM) is a rare congenital anomaly of lymphatic vessel development. Based on its clinical and histologic features, it can be classified as macrocystic, microcystic,or mixed. Lymphatic malformation grows relatively slowly and almost never subsides naturally. Currently,the focus of research on lymphatic malformations has shifted to drug therapy, especially targeted drugs for their gene regulation. In recent years, several gene mutations, such as PIK3CA, TEK, GATA2, CCBE1,etc., have been found to be closely associated with lymphatic malformations, which provides new ideas for molecular diagnosis and targeted therapy. The aim of this paper is to explore the pathogenesis of lymphatic malformations in depth and to combine it with the current research progress in drug therapy, in order to improve the understanding of the molecular mechanism of lymphatic malformations and to provide more targeted medication guidance for clinical treatment.

[1]
Oliver G, Kipnis J, Randolph GJ, et al. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease[J]. Cell, 2020, 182(2): 270-296.
[2]
Das A, Goyal A, Sangwan A, et al. Vascular anomalies:nomenclature, classification, and imaging algorithms[J]. Acta Radiol, 2023, 64(2): 837-849.
[3]
Mäkinen T, Boon LM, Vikkula M, et al. Lymphatic malformations:genetics, mechanisms and therapeutic strategies[J]. Circ Res,2021, 129(1): 136-154.
[4]
François M, Short K, Secker GA, et al. Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice[J]. Dev Biol, 2012,364(2): 89-98.
[5]
Deng Y, Zhang X, Simons M. Molecular controls of lymphatic VEGFR3 signaling[J]. Arterioscler Thromb Vasc Biol, 2015,35(2): 421-429.
[6]
Korhonen EA, Murtomäki A, Jha SK, et al. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression[J]. J Clin Invest, 2022, 132(15): e155478.
[7]
Srinivasan RS, Escobedo N, Yang Y, et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors[J]. Genes & Development, 2014,28(19): 2175.
[8]
Lin FJ, Chen X, Qin J, et al. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development[J]. J Clin Invest, 2010, 120(5):1694-1707.
[9]
Cermenati S, Moleri S, Neyt C, et al. Sox18 genetically interacts with VegfC to regulate lymphangiogenesis in zebrafish[J].Arterioscler Thromb Vasc Biol, 2013, 33(6): 1238-1247.
[10]
Hernández Vásquez MN, Ulvmar MH, González-Loyola A, et al. Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels[J]. EMBO J, 2021, 40(12): e107192.
[11]
Kazenwadel J, Betterman KL, Chong CE, et al. GATA2 is required for lymphatic vessel valve development and maintenance[J]. J Clin Invest, 2015, 125(8): 2979-2994.
[12]
Bálint L, Ocskay Z, Deák BA, et al. Lymph flow induces the postnatal formation of mature and functional meningeal lymphatic vessels[J]. Front Immunol, 2019, 10: 3043.
[13]
Sweet DT, Jiménez JM, Chang J, et al. Lymph flow regulates collecting lymphatic vessel maturation in vivo[J]. J Clin Invest,2015, 125(8): 2995-3007.
[14]
Kim H, Kim M, Im SK, et al. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes[J]. Lab Anim Res, 2018, 34(4): 147-159.
[15]
Venot Q, Blanc T, Rabia SH, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome[J]. Nature, 2018,558(7711): 540-546.
[16]
Srinivasan RS, Geng X, Yang Y, et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells[J].Genes Dev, 2010, 24(7): 696-707.
[17]
Song E, Mao T, Dong H, et al. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours[J]. Nature,2020, 577(7792): 689-694.
[18]
Ersahin T, Tuncbag N, Cetin-Atalay R. The PI3K/AKT/mTOR interactive pathway[J]. Mol Biosyst, 2015, 11(7): 1946-1954.
[19]
Rodriguez-Laguna L, Agra N, Ibañez K, et al. Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly[J]. J Exp Med, 2019, 216(2): 407-418.
[20]
Blesinger H, Kaulfuß S, Aung T, et al. PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations[J]. PLOS ONE, 2018, 13(7): e0200343.
[21]
Zhou F, Chang Z, Zhang L, et al. Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development[J]. Am J Pathol, 2010, 177(4): 2124-2133.
[22]
Boscolo E, Pastura P, Glaser K, et al. Signaling pathways and inhibitors of cells from patients with kaposiform lymphangiomatosis[J]. Pediatr Blood Cancer, 2019, 66(8):e27790.
[23]
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update[J]. Physiol Rev, 2012, 92(2): 689-737.
[24]
Deng Y, Atri D, Eichmann A, et al. Endothelial ERK signaling controls lymphatic fate specification[J]. J Clin Invest, 2013,123(3): 1202-1215.
[25]
Yu P, Tung JK, Simons M. Lymphatic fate specification: an ERK-controlled transcriptional program[J]. Microvasc Res, 2014, 96:10-15.
[26]
Dellinger MT, Brekken RA. Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced proliferation and migration of lymphatic endothelium[J]. PLoS One, 2011, 6(12):e28947.
[27]
Ichise T, Yoshida N, Ichise H. H-, N- and Kras cooperatively regulate lymphatic vessel growth by modulating VEGFR3 expression in lymphatic endothelial cells in mice[J]. Development,2010, 137(6): 1003-1013.
[28]
Frye M, Taddei A, Dierkes C, et al. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program[J]. Nat Commun, 2018, 9(1):1511.
[29]
González-Loyola A, Bovay E, Kim J, et al. FOXC2 controls adult lymphatic endothelial specialization, function, and gut lymphatic barrier preventing multiorgan failure[J]. Sci Adv, 2021, 7(29):eabf4335.
[30]
Sabine A, Bovay E, Demir CS, et al. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature[J]. J Clin Invest, 2015,125(10): 3861-3877.
[31]
Norden PR, Sabine A, Wang Y, et al. Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation[J]. Elife, 2020, 9: e53814.
[32]
Bos FL, Caunt M, Peterson-Maduro J, et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo[J]. Circ Res, 2011, 109(5): 486-491.
[33]
Sheppard SE, March ME, Seiler C, et al. Lymphatic disorders caused by mosaic, activating KRAS variants respond to MEK inhibition[J]. JCI Insight, 2023, 8(9): e155888.
[34]
Barclay SF, Inman KW, Luks VL, et al. A somatic activating NRAS variant associated with kaposiform lymphangiomatosis[J].Genet Med, 2019, 21(7): 1517-1524.
[35]
Foster JB, Li D, March ME, et al. Kaposiform lymphangiomatosis effectively treated with MEK inhibition[J]. EMBO Mol Med,2020, 12(10): e12324.
[36]
Kalwani NM, Rockson SG. Management of lymphatic vascular malformations: a systematic review of the literature[J]. J Vasc Surg Venous Lymphat Disord, 2021, 9(4): 1077-1082.
[37]
Hori Y, Ozeki M, Hirose K, et al. Analysis of mTOR pathway expression in lymphatic malformation and related diseases[J].Pathology International, 2020, 70(6): 323-329.
[38]
Luo Y, Liu L, Rogers D, et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression.[J].Neoplasia, 2012, 14(3): 228-237.
[39]
Ozeki M, Nozawa A, Yasue S, et al. The impact of sirolimus therapy on lesion size, clinical symptoms, and quality of life of patients with lymphatic anomalies[J]. Orphanet Journal of Rare Diseases, 2019, 14(1): 141.
[40]
Maruani A, Tavernier E, Boccara O, et al. Sirolimus (Rapamycin)for slow-flow malformations in children[J]. JAMA Dermatol,2021, 157(11): 1-10.
[41]
Adams DM, Trenor CC, Hammill AM, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies[J].Pediatrics, 2016, 137(2): e20153257.
[42]
André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer[J]. N Engl J Med, 2019, 380(20): 1929-1940.
[43]
Delestre F, Venot Q, Bayard C, et al. Alpelisib administration reduced lymphatic malformations in a mouse model and in patients[J]. Sci Transl Med, 2021, 13(614): eabg0809.
[44]
Wenger TL, Ganti S, Bull C, et al. Alpelisib for the treatment of PIK3CA-related head and neck lymphatic malformations and overgrowth[J]. Genet Med, 2022, 24(11): 2318-2328.
[45]
Al-Jundi M, Thakur S, Gubbi S, et al. Novel targeted therapies for metastatic thyroid cancer-a comprehensive review[J]. Cancers(Basel), 2020, 12(8): 2104.
[46]
Homayun-Sepehr N, McCarter AL, Helaers R, et al. KRAS-driven model of Gorham-Stout disease effectively treated with trametinib[J]. JCI Insight, 2021, 6(15): e149831.
[47]
Manevitz-Mendelson E, Leichner GS, Barel O, et al. Somatic NRAS mutation in patient with generalized lymphatic anomaly[J].Angiogenesis, 2018, 21(2): 287-298.
[48]
Li D, March ME, Gutierrez-Uzquiza A, et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor[J]. Nat Med, 2019, 25(7): 1116-1122.
[49]
Chowers G, Abebe-Campino G, Golan H, et al. Treatment of severe Kaposiform lymphangiomatosis positive for NRAS mutation by MEK inhibition[J]. Pediatr Res, 2023,94(6): 1911-1915.
[1] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[2] 张静, 刘畅, 华成舸. 妊娠期患者口腔诊疗进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(05): 340-344.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 谢汶歆, 马乐, 刘晔, 曹晓明, 张万春. 前列腺特异性膜抗原PET/CT在肾癌诊疗中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 514-519.
[5] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[6] 杨勇军, 曾一鸣, 贺显雅, 卢强, 李远伟. ASA分级≥Ⅲ级患者局麻经会阴前列腺多模态影像融合穿刺的安全性和有效性[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 441-447.
[7] 宋新雅, 苏小慧, 卞士柱, 丁小涵. 吸入性药物治疗肺动脉高压的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(05): 831-835.
[8] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[9] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[10] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[11] 李永政, 孟煜凡, 樊知遥, 展翰翔. 胰腺神经内分泌肿瘤新辅助治疗研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 481-486.
[12] 汤畅通, 王永楠, 王诗筌. 颅脑外伤后阵发性交感神经兴奋患者的药物治疗效果分析[J]. 中华神经创伤外科电子杂志, 2024, 10(04): 233-237.
[13] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[14] 王光伟, 李桂莲, 王勇. 散发性静脉畸形的靶向治疗进展[J]. 中华介入放射学电子杂志, 2024, 12(04): 380-385.
[15] 张成惠, 闫中瑞, 盛志强, 袁嫣然. 脑肌酸缺乏症诊断与治疗研究进展[J]. 中华诊断学电子杂志, 2024, 12(04): 270-275.
阅读次数
全文


摘要