切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (04) : 362 -368. doi: 10.3877/cma.j.issn.2095-5782.2024.04.013

基础研究

多壳扩散磁共振成像在缺血性卒中模型的应用
梁铭垚1,2,3, 袁健瑜4, 关雨霏1,2,3, 左思程1,2,3, 阳新明1,2,3,(), 陈巧燕4,()   
  1. 1.519000 广东珠海,中山大学附属第五医院分子影像中心
    2.519000 广东珠海,中山大学附属第五医院广东省分子影像工程技术研究中心
    3.519000 广东珠海,中山大学附属第五医院广东省介入医学粤港澳高校联合实验室
    4.518055 广东深圳,中国科学院深圳先进技术研究院
  • 收稿日期:2024-10-15 出版日期:2024-11-25
  • 通信作者: 阳新明, 陈巧燕
  • 基金资助:
    国家重点研发计划(2023YFF0714204)

Application of multi-shell diffusion magnetic resonance imaging in ischemic stroke models

Mingyao Liang1,2,3, Jianyu Yuan4, Yufei Guan1,2,3, Sicheng Zuo1,2,3, Xinming Yang1,2,3,(), Qiaoyan Chen,4()   

  1. 1.Molecular Imaging Center,The Fifth Affiliated Hospital Sun Yat-sen University
    2.Guangdong Provincial Molecular Imaging Engineering Technology Research Center
    3.Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine,Guangdong Zhuhai 519000
    4.Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Guangdong Shenzhen 518055,China
  • Received:2024-10-15 Published:2024-11-25
  • Corresponding author: Xinming Yang, Qiaoyan Chen
引用本文:

梁铭垚, 袁健瑜, 关雨霏, 左思程, 阳新明, 陈巧燕. 多壳扩散磁共振成像在缺血性卒中模型的应用[J]. 中华介入放射学电子杂志, 2024, 12(04): 362-368.

Mingyao Liang, Jianyu Yuan, Yufei Guan, Sicheng Zuo, Xinming Yang, Qiaoyan Chen. Application of multi-shell diffusion magnetic resonance imaging in ischemic stroke models[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(04): 362-368.

目的

探讨多壳扩散磁共振成像在缺血性卒中模型的应用效果。

方法

本研究建立了大鼠大脑中动脉缺血再灌注模型,通过9.4T小动物活体磁共振成像系统,在多壳扩散磁共振成像框架下,分析了经典的弥散张量成像(diffusion tensor imaging,DTI)模型,以及弥散峰度成像(diffusion kurtosis imaging,DKI)以及神经突方向弥散和密度成像(neurite orientation dispersion and density imaging,NODDI),通过配对t检验和受试者工作特征(receiver operating characteristic,ROC)曲线及ROC曲线下面积(area under the curve,AUC)评估扩散指数的检测性能、灵敏度和特异度。

结果

梗死侧与对照侧正常区域相比,NODDI指数取向分散指数(orientation dispersion index,ODI)、细胞内体积分数(neurite density index,NDI)和自由水分数(volume fraction of isotropic water,FISO)之间存在显著差异(P<0.001)。NODDI指数NDI和DKI指数MK分别表现出最好检测性能(AUC:0.977 8)和较好性能(AUC:0.927 6)。同时,组织学结果进一步验证和解析多壳弥散指数改变。

结论

多壳扩散磁共振成像对检测和揭示缺血性卒中期间脑组织的微结构变化表现出高灵敏性,为缺血性脑卒中的诊断和治疗在临床实践中的转化奠定了重要基础。

Objective

To demonstrate the feasibility of multi-shell diffusion magnetic resonance imaging (MRI) techniques in characterizing microstructural changes in brain tissue during ischemic stroke.This study evaluates the differences, specificity and sensitivity of diffusion metrics.

Methods

We established a middle cerebral artery occlusion-reperfusion (MCAO/R) model in rats. Using a 9.4T small animal in vivo magnetic resonance imaging system, we collected multi-shell diffusion data, and analyzed a typical diffusion tensor imaging (DTI) model, and two advanced models diffusion kurtosis imaging (DKI), and neurite orientation dispersion and density imaging (NODDI), within the framework of multi-shell diffusion magnetic resonance imaging. Paired t-tests, receiver operating characteristic (ROC) curve and area under the curve(AUC) were employed to assess the specificity and sensitivity of diffusion metrics.

Results

Compared to the contralateral normal region, significant differences were observed in all NODDI indices: orientation dispersion index (ODI), neurite density index (NDI), and volume fraction of isotropic water (FISO) on the infarcted side(P<0.001), with NODDI metrics demonstrating high detection performance. Both NDI and the DKI index showed similar capabilities in detecting disease progression. NDI and DKI showed similar capabilities in detecting disease progression. Furthermore, NODDI-related metrics were consistent with histological analysis results.

Conclusion

Multi-shell diffusion magnetic resonance imaging exhibits high sensitivity in detecting and revealing microstructural changes in brain tissue during ischemic stroke, establishing a crucial foundation for the clinical translation of diagnostic and therapeutic strategies for ischemic stroke.

图1 大鼠缺血再灌注模型病变与对照侧组织间NODDI值的比较
表1 多壳弥散参数ROC分析
图2 NODDI与DTI/DKI参数评估梗死灶的特异度和灵敏度对比
图3 大鼠缺血再灌注模型梗死区域与对照侧区域HE、LFB染色比较(比例尺:×5 μm)
[1]
中国卒中学会, 中国卒中学会神经介入分会, 中华预防医学会卒中预防与控制专业委员会介入学组.急性缺血性卒中血管内治疗中国指南2023[J]. 中国卒中杂志, 2023, 18(6): 684-711.
[2]
Hilkens NA, Casolla B, Leung TW, et al. Stroke[J]. Lancet, 2024,403(10446): 2820-2836.
[3]
DiBella EVR, Sharma A, Richards L, et al. Beyond diffusion tensor MRI methods for improved characterization of the brain after ischemic stroke: a review[J]. AJNR Am J Neuroradiol, 2022,43(5): 661-669.
[4]
McCunn P, Gilbert KM, Zeman P, et al. Reproducibility of neurite orientation dispersion and density imaging (NODDI) in rats at 9.4 tesla[J]. PLoS One, 2019, 14(4): e0215974.
[5]
Billiet T, Vandenbulcke M, Mädler B, et al. Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI[J]. Neurobiol Aging, 2015, 36(6):2107-2121.
[6]
Wang ZX, Zhu WZ, Zhang S, et al. Neurite orientation dispersion and density imaging of rat brain microstructural changes due to middle cerebral artery occlusion at a 3T MRI[J]. Curr Med Sci,2021, 41(1): 167-172.
[7]
Sun C, Liu X, Bao C, et al. Advanced non-invasive MRI of neuroplasticity in ischemic stroke: techniques and applications[J].Life Sci, 2020, 261: 118365.
[8]
Kamiya K, Hori M, Aoki S. NODDI in clinical research[J]. J Neurosci Methods, 2020, 346: 108908.
[9]
Churchill NW, Caverzasi E, Graham SJ, et al. White matter microstructure in athletes with a history of concussion: comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) [J]. Hum Brain Mapp, 2017, 38(8):4201-4211.
[10]
Wang Z, Zhang S, Liu C, et al. A study of neurite orientation dispersion and density imaging in ischemic stroke[J]. Magn Reson Imaging, 2019, 57: 28-33.
[11]
She D, Huang H, Guo W, et al. Grading meningiomas with diffusion metrics: a comparison between diffusion kurtosis, mean apparent propagator, neurite orientation dispersion and density,and diffusion tensor imaging[J]. Eur Radiol, 2023, 33(5): 3671-3681.
[12]
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI:practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. Neuroimage, 2012, 61(4): 1000-1016.
[13]
Mastropietro A, Rizzo G, Fontana L, et al. Microstructural characterization of corticospinal tract in subacute and chronic stroke patients with distal lesions by means of advanced diffusion MRI[J]. Neuroradiology, 2019, 61(9): 1033-1045.
[14]
Adluru G, Gur Y, Anderson JS, et al. Assessment of white matter microstructure in stroke patients using NODDI[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014. 2014: 742-745.
[15]
Ohki A, Saito S, Hata J, et al. Neurite orientation dispersion and density imaging for evaluating the severity of neonatal hypoxicischemic encephalopathy in rats[J]. Magn Reson Imaging, 2019,62: 214-219.
[16]
Bagdasarian FA, Yuan X, Athey J, et al. NODDI highlights recovery mechanisms in white and gray matter in ischemic stroke following human stem cell treatment[J]. Magn Reson Med, 2021,86(6): 3211-3223.
[17]
Timmers I, Roebroeck A, Bastiani M, et al. Assessing microstructural substrates of white matter abnormalities: a comparative study using DTI and NODDI[J]. PLoS One, 2016,11(12): e0167884.
[18]
Huang S, Huang C, Li M, et al. White matter abnormalities and cognitive deficit after mild traumatic brain injury: comparing DTI,DKI, and NODDI[J]. Front Neurol, 2022, 13: 803066.
[19]
Hui ES, Fieremans E, Jensen JH, et al. Stroke assessment with diffusional kurtosis imaging[J]. Stroke, 2012. 43(11): 2968-2973.
[20]
Maurer JM, Harenski KA, Paul S, et al. Machine learning classification of chronic traumatic brain injury using diffusion tensor imaging and NODDI: a replication and extension study[J].Neuroimage Rep, 2023, 3(1): 100157.
[21]
Palacios EM, Owen JP, Yuh EL, et al. The evolution of white matter microstructural changes after mild traumatic brain injury:a longitudinal DTI and NODDI study[J]. Sci Adv, 2020, 6(32):eaaz6892.
[22]
Oquita R, Cuello V, Uppati S, et al. Moving toward elucidating alternative motor pathway structures post-stroke: the value of spinal cord neuroimaging[J]. Front Neurol, 2024, 15: 1282685.
[1] 张恒, 曲海波. 宫颈癌淋巴结转移的影像学诊断[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 503-509.
[2] 张莉, 左晓玲, 王宁利. 神经退行性疾病脱髓鞘病变及扩散张量成像检测技术的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(01): 52-56.
[3] 麦麦提力·米吉提, 李云雷, 吴昊, 李彦东, 沈宇晟, 吕明月, 朱国华. 弥散张量成像传导束重建技术指导高级别胶质瘤切除的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 101-105.
[4] 刘安民, 曹宁, 谢佳芯, 封亚平. 多模态影像学技术在意识障碍诊疗中的应用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 216-219.
[5] 曹付强, 李经纶, 王本瀚. DTI及DTT技术在弥漫性轴索伤预后判断中的作用[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 304-307.
[6] 陶庆霞, 杨艺, 何江弘, 王路斌, 夏小雨, 王翀, 王勇, 徐如祥. 弥散张量成像对意识障碍患者诊断与预后评估的作用[J]. 中华神经创伤外科电子杂志, 2016, 02(06): 341-345.
[7] 杨艺, 吴月奎, 夏小雨, 张昊驹, 尹霄霄, 何江弘, 戴宜武, 徐如祥. 弥散张量成像在意识障碍诊断中的应用[J]. 中华神经创伤外科电子杂志, 2016, 02(04): 231-234.
[8] 吉莉, 苏云楠, 王斌, 沈滔, 刘团结, 毛蕾, 徐玉萍, 张婷, 王博. 急性缺血性脑卒中患者脑白质微结构改变对长期认知功能损伤的预测价值研究[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 193-200.
[9] 惠子欣, 张军. 弥散张量成像对重复经颅磁刺激治疗缺血性脑卒中偏瘫患者的疗效评估[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 204-209.
[10] 黄灏宇, 庄泽森, 林万庆, 石娇, 袁旭, 王单, 周晓媚, 万义文, 林源, 陈尚杰. 调神益智艾灸治疗遗忘型轻度认知障碍的弥散张量成像研究[J]. 中华针灸电子杂志, 2024, 13(02): 58-64.
[11] 袁健瑜, 梁铭垚, 何祎, 单鸿. 骨架化弥散指数在识别年龄相关鼠脑微结构改变中的应用效果[J]. 中华介入放射学电子杂志, 2024, 12(02): 114-119.
[12] 黄丽丽, 徐运. 基于失连接理论:关键位置纤维微结构损伤在脑小血管病相关认知功能障碍发病机制中的研究进展[J]. 中华脑血管病杂志(电子版), 2020, 14(06): 327-332.
阅读次数
全文


摘要