切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (02) : 114 -119. doi: 10.3877/cma.j.issn.2095-5782.2024.02.003

基础研究

骨架化弥散指数在识别年龄相关鼠脑微结构改变中的应用效果
袁健瑜1, 梁铭垚1, 何祎1,(), 单鸿1,()   
  1. 1. 519000 广东珠海,中山大学附属第五医院分子影像中心;广东省分子影像工程技术研究中心;广东省介入医学粤港澳高校联合实验室
  • 收稿日期:2024-04-10 出版日期:2024-05-25
  • 通信作者: 何祎, 单鸿
  • 基金资助:
    国家高层次青年人才项目(RLZY20231001-01)

Skeletonized diffusion indexes identify age-related microstructural alteration in mouse brain

Jianyu Yuan1, Mingyao Liang1, Yi He1,(), Hong Shan1,()   

  1. 1. Molecular Imaging Center, the Fifth Affiliated Hospital Sun Yat-sen University; Guangdong Provincial Molecular Imaging Engineering Technology Research Center; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong Zhuhai 519000, China
  • Received:2024-04-10 Published:2024-05-25
  • Corresponding author: Yi He, Hong Shan
引用本文:

袁健瑜, 梁铭垚, 何祎, 单鸿. 骨架化弥散指数在识别年龄相关鼠脑微结构改变中的应用效果[J]. 中华介入放射学电子杂志, 2024, 12(02): 114-119.

Jianyu Yuan, Mingyao Liang, Yi He, Hong Shan. Skeletonized diffusion indexes identify age-related microstructural alteration in mouse brain[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(02): 114-119.

目的

探究骨架化弥散指数能否灵敏检测鼠脑年龄相关微结构变化,并进一步探讨小鼠性成熟到体成熟阶段神经可塑性。

方法

运用弥散张量成像(diffusion tensor imaging,DTI)扫描8周龄和12周龄小鼠,基于ANTs(advanced normalization tools)改良基于纤维束追踪的空间统计(tract-based spatial statistics,TBSS)分析小鼠白质骨架,并首次使用骨架化平均扩散率的峰宽(peak width of skeletonized mean diffusivity,PSMD)评估小鼠年龄相关的白质微结构特征。

结果

在大部分白质纤维束中,如前连合、胼胝体前部和膝部等,体成熟小鼠各向异性分数(fractional anisotropy,FA)显著高于性成熟小鼠(P < 0.05)。在小鼠胼胝体体部中间区域、扣带回区域,体成熟小鼠FA明显下降(P < 0.05)。体成熟小鼠PSMD稳定增加(P < 0.001)。

结论

骨架化弥散指数能敏感地识别出性成熟到体成熟小鼠脑微结构改变,提示性成熟后白质束仍有髓鞘形成,神经纤维进一步成熟。

Objective

To investigate the sensitivity of skeletonized diffusion indexes in detecting age-related microstructural alteration in the mouse brain and to evaluate the neurostructural plasticity of mouse brain from sexual to body maturity.

Methods

Diffusion tensor imaging (DTI) was used to scan 8-week-old and 12-week-old mice. White matter skeleton was analyzed by tract tracing-based spatial statistics (TBSS) based on advanced normalization tools (ANTs). The peak width of the skeletonized average diffusivity (PSMD) was used to assess age-related white matter microstructural characteristics in mice.

Results

In mature mice, numerous white matter fiber tracts, including the anterior commissure, as well as the anterior and genu of the corpus callosum, exhibited significantly higher fractional isotropy (FA) compared to those in sexually mature mice(P < 0.05). Conversely, within the middle of the body of the corpus callosum and the cingulate cortex, a notable reduction in FA was observed in mature mice (P < 0.05). Furthermore, the peak width of skeletonized mean diffusivity (PSMD) demonstrated a consistent increase in body mature mice (P < 0.001).

Conclusion

The skeletonized diffusion index can identify age-dependent microstructural changes in the mouse brain, suggesting that myelination of white matter tracts and further maturation of nerve fibers occur from sexual to full body maturity.

图1 性成熟和体成熟小鼠FA骨架和TBSS空间分布图1A:性成熟(8周龄)和体成熟小鼠(12周龄)FA图像;1B:平均FA骨架(绿色);1C:体成熟小鼠骨架FA显著高于性成熟小鼠(红色,12周龄和8周龄小鼠骨架FA组间比较,*P < 0.05);体成熟小鼠骨架FA显著低于性成熟小鼠(蓝色,12周龄和8周龄小鼠骨架FA组间比较,*P < 0.05)。FA为各向异性分数。
图2 性成熟小鼠脑骨架化平均扩散的峰宽低于体成熟小鼠2A:性成熟小鼠(8周龄)平均骨架化MD直方图;2B:体成熟小鼠(12周龄)平均骨架化MD直方图;2C:两者平均骨架化MD直方图比较;2D:体成熟小鼠脑PSMD显著高于性成熟小鼠,(12周龄和8周龄小鼠PSMD组间比较,**P < 0.001)。MD为平均扩散系数;PSMD为骨架化平均扩散率的峰宽。
图3 性成熟和体成熟小鼠骨架化FA增加和下降区域MD和PSMD的组间比较3A:骨架化FA随年龄增长显著上升区域;3B:骨架化FA随年龄增长显著上升区域;3C、3E:体成熟小鼠骨架化FA显著性小于性成熟小鼠和该区域MD和PSMD的组间对比;3D、3F:体成熟小鼠骨架化FA显著性大于性成熟小鼠和该区域MD和PSMD的组间对比,(12周龄和8周龄小鼠组间比较,*P < 0.05;**P < 0.001)。FA为各向异性分数;MD为平均扩散系数;PSMD为骨架化平均扩散率的峰宽。
[1]
Ouyang M, Peng Q, Jeon T, et al. Diffusion-MRI-based regional cortical microstructure at birth for predicting neurodevelopmental outcomes of 2-year-olds[J]. Elife, 2020, 9: e58116.
[2]
Baloch S, Verma R, Huang H, et al. Quantification of brain maturation and growth patterns in C57BL/6J mice via computational neuroanatomy of diffusion tensor images[J]. Cereb Cortex, 2009, 19(3): 675-687.
[3]
Yon M, Bao Q, Chitrit OJ, et al. High-resolution 3D in vivo brain diffusion tensor imaging at ultrahigh fields: following maturation on juvenile and adult mice[J]. Front Neurosci, 2020, 14: 590900.
[4]
Chahboune H, Ment LR, Stewart WB, et al. Neurodevelopment of C57B/L6 mouse brain assessed by in vivo diffusion tensor imaging[J]. NMR Biomed, 2007, 20(3): 375-382.
[5]
Piekarski DJ, Zahr NM, Zhao Q, et al. White matter microstructural integrity continues to develop from adolescence to young adulthood in mice and humans: Same phenotype, different mechanism[J]. Neuroimage Rep, 2023, 3(3): 100179.
[6]
Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models[J]. Environ Health Perspect, 2000, 108 Suppl 3(Suppl 3): 511-533.
[7]
Craig A, Ling Luo N, Beardsley DJ, et al. Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human[J]. Exp Neurol, 2003, 181(2): 231-240.
[8]
Zeiss CJ.Comparative milestones in rodent and human postnatal central nervous system development[J]. Toxicol Pathol, 2021, 49(8): 1368-1373.
[9]
Deary IJ, Ritchie SJ, Muñoz Maniega S, et al. Brain peak width of skeletonized mean diffusivity (PSMD) and cognitive function in later life[J]. Front Psychiatry, 2019, 10: 524.
[10]
Bookstein FL. "Voxel-based morphometry" should not be used with imperfectly registered images[J]. Neuroimage, 2001, 14(6): 1454-1462.
[11]
O'Gorman RL, Bucher HU, Held U, et al. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants[J]. Brain, 2015. 138(Pt 2): 388-397.
[12]
Cox SR, Ritchie SJ, Tucker-Drob EM, et al. Ageing and brain white matter structure in 3,513 UK biobank participants[J]. Nat Commun, 2016, 7: 13629.
[13]
Baykara E, Gesierich B, Adam R, et al. A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms[J]. Ann Neurol, 2016. 80(4): 581-592.
[14]
Lam BYK, Leung KT, Yiu B, et al. Peak width of skeletonized mean diffusivity and its association with age-related cognitive alterations and vascular risk factors[J]. Alzheimers Dement (Amst), 2019, 11: 721-729.
[15]
Blesa M, Galdi P, Sullivan G, et al. Peak width of skeletonized water diffusion MRI in the neonatal brain[J]. Front Neurol, 2020, 11: 235.
[16]
Sturrock, RR. Myelination of the mouse corpus callosum[J]. Neuropathol Appl Neurobiol, 1980, 6(6): 415-420.
[17]
Schwarz CG, Reid RI, Gunter JL, et al. Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics[J]. Neuroimage, 2014, 94: 65-78.
[18]
Ku RY, Torii M. New molecular players in the development of callosal projections[J]. Cells, 2020, 10(1): 29.
[19]
Srivatsa S, Parthasarathy S, Britanova O, et al. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation[J]. Nat Commun, 2014, 5: 3708.
[20]
He Y, Aznar S, Siebner HR, et al. In vivo tensor-valued diffusion MRI of focal demyelination in white and deep grey matter of rodents[J]. Neuroimage Clin, 2021, 30: 102675.
[21]
Beaudet G, Tsuchida A, Petit L, et al. Age-related changes of peak width skeletonized mean diffusivity (PSMD) across the adult lifespan: A multi-cohort study[J]. Front Psychiatry, 2020, 11: 342.
[1] 张恒, 曲海波. 宫颈癌淋巴结转移的影像学诊断[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 503-509.
[2] 麦麦提力·米吉提, 李云雷, 吴昊, 李彦东, 沈宇晟, 吕明月, 朱国华. 弥散张量成像传导束重建技术指导高级别胶质瘤切除的临床研究[J]. 中华神经创伤外科电子杂志, 2022, 08(02): 101-105.
[3] 刘安民, 曹宁, 谢佳芯, 封亚平. 多模态影像学技术在意识障碍诊疗中的应用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 216-219.
[4] 曹付强, 李经纶, 王本瀚. DTI及DTT技术在弥漫性轴索伤预后判断中的作用[J]. 中华神经创伤外科电子杂志, 2020, 06(05): 304-307.
[5] 陶庆霞, 杨艺, 何江弘, 王路斌, 夏小雨, 王翀, 王勇, 徐如祥. 弥散张量成像对意识障碍患者诊断与预后评估的作用[J]. 中华神经创伤外科电子杂志, 2016, 02(06): 341-345.
[6] 杨艺, 吴月奎, 夏小雨, 张昊驹, 尹霄霄, 何江弘, 戴宜武, 徐如祥. 弥散张量成像在意识障碍诊断中的应用[J]. 中华神经创伤外科电子杂志, 2016, 02(04): 231-234.
[7] 惠子欣, 张军. 弥散张量成像对重复经颅磁刺激治疗缺血性脑卒中偏瘫患者的疗效评估[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 204-209.
[8] 黄丽丽, 徐运. 基于失连接理论:关键位置纤维微结构损伤在脑小血管病相关认知功能障碍发病机制中的研究进展[J]. 中华脑血管病杂志(电子版), 2020, 14(06): 327-332.
阅读次数
全文


摘要