切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (02) : 106 -113. doi: 10.3877/cma.j.issn.2095-5782.2024.02.002

基础研究

卡非佐米联合碘-125粒子照射促进人食管癌细胞KYSE-150凋亡的机制研究
王超1, 王浩1, 孙柏1, 袁野1, 羌伟光1, 石红兵1,()   
  1. 1. 213003 江苏常州,常州市第一人民医院肿瘤科
  • 收稿日期:2023-10-30 出版日期:2024-05-25
  • 通信作者: 石红兵
  • 基金资助:
    江苏省自然科学基金项目(BK20210085)

The pro-apoptotic effect of carfilzomib combined with iodine-125 seed irradiation on KYSE-150 esophageal cancer cells

Chao Wang1, Hao Wang1, Bai Sun1, Ye Yuan1, Weiguang Qiang1, Hongbing Shi1,()   

  1. 1. Department of Oncology, the First People's Hospital of Changzhou, Jiangsu Changzhou 213003, China
  • Received:2023-10-30 Published:2024-05-25
  • Corresponding author: Hongbing Shi
引用本文:

王超, 王浩, 孙柏, 袁野, 羌伟光, 石红兵. 卡非佐米联合碘-125粒子照射促进人食管癌细胞KYSE-150凋亡的机制研究[J]. 中华介入放射学电子杂志, 2024, 12(02): 106-113.

Chao Wang, Hao Wang, Bai Sun, Ye Yuan, Weiguang Qiang, Hongbing Shi. The pro-apoptotic effect of carfilzomib combined with iodine-125 seed irradiation on KYSE-150 esophageal cancer cells[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(02): 106-113.

目的

探索卡非佐米(carfilzomib,CFZ)联合碘-125(iodine-125,125I)粒子照射对人食管癌细胞KYSE-150增殖、衰老和凋亡的影响,并研究相关机制。

方法

将KYSE-150细胞与CFZ共孵育24 h,然后采用CCK-8法评估CFZ的毒性作用并筛选研究浓度。分别使用CFZ、125I粒子照射(6 Gy),以及CFZ和125I粒子的联合治疗处理KYSE-150细胞。通过EdU法检测细胞增殖,β-半乳糖苷酶染色检测细胞衰老,流式细胞术检测细胞周期和凋亡。通过蛋白免疫印迹法检测与DNA损伤、内质网应激、凋亡和凋亡通路相关的蛋白表达。通过siRNA沉默CHOP基因后,细胞经联合治疗处理,随后评估凋亡相关蛋白的改变。

结果

CFZ浓度≥20 nmol/L时,细胞活力受限。20 nmol/L的CFZ处理24 h对细胞增殖、DNA损伤、细胞衰老和凋亡的影响不显著。相较于125I粒子单一治疗,联合治疗进一步抑制细胞增殖,加重DNA损伤,下调S期和G2/M期细胞比例,加剧内质网应激,促进细胞凋亡。蛋白水平研究显示,CFZ通过内源性凋亡通路促进125I粒子诱导的细胞凋亡。联合治疗诱导的内源性细胞凋亡由PERK-eIF2α-ATF4-CHOP通路介导,且不依赖于p53。此外,CFZ能促使125I粒子诱导的衰老细胞死亡。

结论

CFZ联合125I粒子照射能抑制细胞增殖、加重DNA损伤和内质网应激、通过PERK-eIF2α-ATF4-CHOP通路促进细胞凋亡、并促使衰老细胞死亡;CFZ是125I粒子有效的增敏剂。

Objective

To investigate the effects of carfilzomib (CFZ) combined with iodine-125 (125I) seed irradiation on the proliferation, cellular senescence, and apoptosis in human esophageal cancer cells KYSE-150, and study the related mechanisms.

Methods

KYSE-150 cells were incubated with CFZ for 24 h,and then CCK-8 assay was used to evaluate the toxic effect of CFZ and screen the research concentration. KYSE-150 cells were treated with CFZ, 125I seed irradiation (6 Gy), and combined treatment with CFZ and 125I seeds, respectively. Cell proliferation was detected by EdU assay, cellular senescence was detected by β-galactosidase staining, and cell cycle and apoptosis were determined by flow cytometry. The expression of proteins related to DNA damage, endoplasmic reticulum stress, apoptosis, and apoptosis pathways was evaluated by Western blotting. After silencing the CHOP gene by siRNA, cells were treated with combined treatment, and then changes in apoptosis-related proteins were evaluated.

Results

Cell viability was limited when the concentration of CFZ was ≥20 nmol/L. Treatment with 20 nmol/L CFZ for 24 h had no significant effect on cell proliferation, DNA damage, cellular senescence, and apoptosis. Compared with 125I seeds monotherapy, combined treatment further inhibited cell proliferation, aggravated DNA damage, downregulated the proportion of cells in the S phase and G2/M phase, aggravated endoplasmic reticulum stress, and promoted cell apoptosis. Experiments at the protein level showed that CFZ promoted 125I seeds-induced apoptosis through the intrinsic apoptotic pathway. The intrinsic apoptosis induced by the combined treatment was mediated by the PERK-eIF2α-ATF4-CHOP pathway and was independent of p53. In addition, CFZ promoted the death of 125I seeds-induced senescent cells.

Conclusion

CFZ combined with 125I seed irradiation can inhibit cell proliferation, aggravate DNA damage and endoplasmic reticulum stress, promote cell apoptosis through the PERK-eIF2α-ATF4-CHOP pathway, and promote the death of senescent cells. CFZ is an effective sensitizer for 125I seeds.

图1 卡非佐米(CFZ)的毒性和CFZ联合125I粒子对细胞增殖的影响1A:125I粒子体外照射模型的示意图;1B:CCK-8法检测特定浓度CFZ与KYSE-150细胞共孵育24 h后的细胞活力(0 nmol/L为对照组);1C:EdU法检测CFZ、125I粒子或联合治疗对KYSE-150细胞的增殖影响。与对照组比较:*P < 0.05,***P < 0.001;指定组间比较:##P < 0.01。
图2 卡非佐米(CFZ)联合125I粒子对DNA损伤、细胞周期和细胞衰老的影响2A:CFZ、125I粒子或联合治疗处理KYSE-150细胞后,免疫印迹法检测DNA损伤标志物γ-H2AX的表达;2B:流式细胞术检测细胞周期;2C:β-半乳糖苷酶染色检测细胞衰老。与对照组比较:*P < 0.05,**P < 0.01,***P < 0.001;指定组间比较:#P<0.05,##P < 0.01,###P < 0.001。
图3 卡非佐米(CFZ)联合125I粒子对细胞凋亡的影响3A:CFZ、125I粒子或联合治疗处理KYSE-150细胞后,流式细胞术检测凋亡细胞比例;3B:免疫印迹法检测凋亡通路蛋白的变化。与对照组比较:*P < 0.05,**P < 0.01,***P < 0.001;指定组间比较:#P < 0.05,##P < 0.01,###P < 0.001。
图4 卡非佐米(CFZ)联合125I粒子通过PERK-eIF2α-ATF4-CHOP通路促进凋亡4A:CFZ、125I粒子或联合治疗处理KYSE-150细胞后,免疫印迹法检测内质网应激标志物Grp78/Bip和PERK-eIF2α-ATF4-CHOP通路关键蛋白的表达;4B:KYSE-150细胞经CHOP特异性siRNA或阴性对照转染后进行联合治疗,免疫印迹法检测CHOP和凋亡通路蛋白的变化。与对照组比较:*P < 0.05,**P < 0.01,***P < 0.001;指定组间比较:#P < 0.05,##P < 0.01,###P < 0.001。
[1]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
Wei S, Li C, Li M, et al. Radioactive iodine-125 in tumor therapy: advances and future directions[J]. Front Oncol, 2021, 11: 717180.
[3]
中国医师协会放射肿瘤治疗医师分会, 中华医学会放射肿瘤治疗学分会, 中国抗癌协会肿瘤放射治疗专业委员会. 中国食管癌放射治疗指南(2022年版)[J]. 国际肿瘤学杂志, 2022, 49(11): 641-657.
[4]
Wu L, Zhao X, Tian S, et al. Efficacy and toxicity of Iodine-125 seed implantation for lymph node recurrence secondary to esophageal cancer after radiotherapy: a multicenter retrospective study[J]. Radiat Oncol, 2023, 18(1): 18.
[5]
Zhu HD, Guo JH, Mao AW, et al. Conventional stents versus stents loaded with (125) iodine seeds for the treatment of unresectable oesophageal cancer: a multicentre, randomised phase 3 trial[J]. Lancet Oncol, 2014, 15(6): 612-619.
[6]
Hsu S, Chiu C, Dahms H, et al. Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells[J]. Int J Mol Sci, 2019, 20(10): 2518.
[7]
Li D, Wang W, Wang Y, et al. Lobaplatin promotes 125I-induced apoptosis and inhibition of proliferation in hepatocellular carcinoma by upregulating PERK-eIF2α-ATF4-CHOP pathway[J]. Cell Death Dis, 2019, 10(10): 744.
[8]
Zulkifli A, Tan FH, Areeb Z, et al. Carfilzomib promotes the unfolded protein response and apoptosis in cetuximab-resistant colorectal cancer[J]. Int J Mol Sci, 2021, 22(13): 7114.
[9]
Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy[J]. Nat Rev Clin Oncol, 2017, 14(7): 417-433.
[10]
Aird EG, Folkard M, Mayes CR, et al. A purpose-built iodine-125 irradiation plaque for low dose rate low energy irradiation of cell lines in vitro[J]. Br J Radiol, 2001, 74(877): 56-61.
[11]
Zhuang HQ, Wang JJ, Liao AY, et al. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells[J]. J Exp Clin Cancer Res, 2009, 28(1): 12.
[12]
Herranz N, Gil J. Mechanisms and functions of cellular senescence[J]. J Clin Invest, 2018, 128(4): 1238-1246.
[13]
杜立法, 刘敬佳, 黄鹂, 等. 125I粒子持续低剂量率照射对人食管癌细胞系KYSE150抑制作用及其机制研究[J]. 中华放射医学与防护杂志, 2014, 34(6): 415-418.
[14]
Wang ZM, Lu J, Zhang LY, et al. Biological effects of low-dose-rate irradiation of pancreatic carcinoma cellsin vitro using 125I seeds[J]. World J Gastroenterol, 2015, 21(8): 2336-2342.
[15]
Wang C, Li T, Zeng C, et al. Iodine-125 seed radiation induces ROS-mediated apoptosis, autophagy and paraptosis in human esophageal squamous cell carcinoma cells[J]. Oncol Rep, 2020, 43(6): 2028-2044.
[16]
Wang C, Li T, Zeng C, et al. Inhibition of endoplasmic reticulum stress-mediated autophagy enhances the anticancer effect of iodine-125 seed radiation on esophageal squamous cell carcinoma[J]. Radiat Res, 2020, 194(3): 236-245.
[17]
Senft D, Ronai ZEA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response[J]. Biochem Sc, 2015, 40(3):141-148.
[18]
Prokhorova EA, Egorshina AY, Zhivotovsky B, et al. The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death[J]. Oncogene, 2020, 39(1): 1-16.
[19]
Lee C, Kim S, Hwang G, et al. Deubiquitinases: modulators of different types of regulated cell death[J]. Int J Mol Sci, 2021, 22(9): 4352.
[20]
Chen H, Han Z, Luo Q, et al. Radiotherapy modulates tumor cell fate decisions: a review[J]. Radiat Oncol, 2022, 17(1): 196.
[1] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 375-380.
[2] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[3] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[4] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[5] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[6] 夏可顺, 黄耀辉, 王茂, 刘志勇, 谭博, 宋鹏, 印晓鸿. miR-145-5p抑制造釉细胞型颅咽管瘤细胞增殖、侵袭和SOX9/β-catenin表达[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 6-15.
[7] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[8] 高建平, 王辉, 王淑萍. 定期家庭随访对胸腔镜食管癌术后饮食恢复功能的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 188-192.
[9] 侯超, 潘美辰, 吴文明, 黄兴广, 李翔, 程凌雪, 朱玉轩, 李文波. 早期食管癌及上皮内瘤变内镜黏膜下剥离术后食管狭窄的危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 383-387.
[10] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[11] 包文华, 塔拉. 自噬及内质网应激在卡非佐米对MCF-7细胞的影响及作用机制[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1181-1191.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 娄彦文, 李涵, 李运鸿, 徐萌冉, 魏洋行, 随蓓蓓. 人参皂苷Rg3对人乳腺癌细胞的代谢活性及caspase 3、CDK2表达的影响[J]. 中华诊断学电子杂志, 2024, 12(02): 90-94.
[15] 黄志宁, 王高祥, 崔世军, 柳常青, 孙效辉, 徐美青, 解明然. 术前纤维蛋白原与前白蛋白比值对可切除食管鳞癌患者预后的影响[J]. 中华胸部外科电子杂志, 2024, 11(01): 23-30.
阅读次数
全文


摘要