切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2024, Vol. 12 ›› Issue (04) : 344 -350. doi: 10.3877/cma.j.issn.2095-5782.2024.04.010

影像诊断

良性肺结节生长变化的影像学评价
杨松林1, 黄仕豪1, 王丽珠1, 李禧萌1, 邹飞翔2, 李坤炜1, 梁明柱1, 陈炳辉1,()   
  1. 1.519000 广东珠海,中山大学附属第五医院放射科
    2.564300 贵州遵义,务川仡佬族苗族自治县人民医院医学影像科
  • 收稿日期:2024-09-26 出版日期:2024-11-25
  • 通信作者: 陈炳辉

Imaging evaluation of growing benign pulmonary nodules

Songlin Yang1, Shihao Huang1, Lizhu Wang1, Ximeng Li1, Feixiang Zou2, Kunwei Li1, Mingzhu Liang1, Binghui Chen1,()   

  1. 1.Department of Radiology,The Fifth Affiliated Hospital of Sun Yat-sen University,Guangdong Zhuhai 519000
    2.Department of Radiology,People's Hospital of Wuchuan Gelao and Miao Autonomous County,Guizhou Zunyi 564300,China
  • Received:2024-09-26 Published:2024-11-25
  • Corresponding author: Binghui Chen
引用本文:

杨松林, 黄仕豪, 王丽珠, 李禧萌, 邹飞翔, 李坤炜, 梁明柱, 陈炳辉. 良性肺结节生长变化的影像学评价[J]. 中华介入放射学电子杂志, 2024, 12(04): 344-350.

Songlin Yang, Shihao Huang, Lizhu Wang, Ximeng Li, Feixiang Zou, Kunwei Li, Mingzhu Liang, Binghui Chen. Imaging evaluation of growing benign pulmonary nodules[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2024, 12(04): 344-350.

目的

分析伴随生长的良性肺结节生长率、CT形态学特征和增强特点,并应用肺结节人工智能(artificial intelligence, AI)辅助诊断工具,为良恶性肺结节的鉴别诊断提供依据。

方法

回顾性分析2016年1月—2023年10月,中山大学附属第五医院20例共22个病理证实生长的良性肺结节。计算结节生长速率和体积倍增时间(volume doubling time,VDT),记录结节在首次CT和末次CT的边缘及内部影像学特征、增强特点和肺结节AI辅助诊断工具对结节危险度判别。

结果

本研究20例患者中,接受外科切除术18例,接受穿刺活检术2例;病理证实隐球菌病1例,结核性肉芽肿3例,炎性假瘤2例,结节性肺泡蛋白沉积症1例,软骨瘤型错构瘤1例,纤维化及坏死结节1例,肉芽肿11例。22个结节首次及末次CT时间间隔91~2 175 d,中位数为419.50(298.25,728.50)d,肺结节增长率为16.67%~566.67%,中位数114.58%(26.07%,217.13%),VDT为44.73~991.67 d,平均(279.55±236.06)d。末次CT表现为实性、部分实性和非实性结节分别为18、3和1个,表现为类圆形、不规则形分别为9、13个,边界清楚、边界模糊分别为18、4个,边缘具备毛刺、分叶、胸膜牵拉结节分别为5、7、10个,内部具备支气管充气征、空泡征、空洞、钙化分别为2、1、1、6个,有2个肺结节周围有卫星灶。末次CT增强扫描的7个结节CT增强净增值均<20 HU。12个结节末次CT经AI分析,其中3个定为高危,9个定为低危。

结论

部分良性肺结节在生长速度和形态上与肺癌相似,CT增强净增值及肺结节AI辅助诊断工具有助于良性结节的诊断,CT引导经皮穿刺活检可能有助于避免不必要的外科手术。

Objective

To analyze the growth rate and CT morphological features and enhancement characteristics of benign lung nodules with concomitant growth, and to apply the AI-assisted diagnostic tool for facilitating the differential diagnosis of benign and malignant lung nodules.

Methods

From January 2016 to October 2023, 22 benign pulmonary nodules in 20 cases in the Fifth Affiliated Hospital of Sun Yat-sen University were retrospectively analyzed. The growth rate and volume doubling time (VDT) of nodules were calculated. The edge and internal imaging features and enhancement features of nodules on the initial CT and the last CT were recorded. The risk of nodules was judged by AI-assisted diagnostic tools for pulmonary nodules.

Results

Eighteen cases received surgical resection and two cases underwent percutaneous biopsy,which leading to the diagnosis of cryptococcosis in 1 case, tuberculous granuloma in 3 cases, inflammatory pseudotumor in 2 cases, nodular alveolar proteinosis in 1 case, chondromatous hamartoma in 1 case, fibrotic and necrotic nodule in 1 case and granuloma in 11 cases. The interval between the initial and last CT scans of 22 pulmonary nodules was 91~2 175 d, with a median of 419.50(298.25, 728.50) d, and the growth rate of pulmonary nodules was 16.67%~566.67%, with a median of 114.58%(26.07%, 217.13%), and the VDT was 44.73~991.67 d, with an average of (279.55±236.06) d. At the last CT scan, there were 18 solid, 3 partially solid and 1 non-solid nodules, round and irregular lesions in 9, 13 nodules respectively, clear and blurred boundaries lesions in 18, 4 nodules respectively, spiculation, lobulation and pleural tag in 5, 7 and 10 nodules respectively, and bronchogram, bubble sign, cavity, and calcification in 2, 1, 1, and 6 nodules respectively,there are 2 nodules with satellite lesions. The mean net enhancement value of 7 nodules in the last enhanced CT scan was less than <20 HU. 12 nodules of the last CT scan were analyzed by AI, of which 3 were classified as high risk and 9 as low risk.

Conclusion

Some benign pulmonary nodules are similar to lung cancer in growth speed and morphology. CT enhancement and AI-assisted diagnostic tools for pulmonary nodules are helpful for the diagnosis of benign nodules, and CT-guided percutaneous biopsy may be helpful to avoid unnecessary surgery.

表1 患者基本临床信息
表2 生长的良性肺结节影像学表现
图1 病例18,男,54岁
图2 病例11,女,63岁
图3 病例19,女,49岁
图4 病例14,女,44岁
[1]
Liang X, Kong Y, Shang H, et al. Computed tomography findings,associated factors, and management of pulmonary nodules in 54,326 healthy individuals[J]. J Cancer Res Ther, 2022, 18(7):2041-2048.
[2]
Erasmus JJ, Connolly JE, Mcadams HP, et al. Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions[J]. Radiographics, 2000, 20(1):43-58.
[3]
Zwirewich CV, Vedal S, Miller RR, et al. Solitary pulmonary nodule: high-resolution CT and radiologic-pathologic correlation[J]. Radiology, 1991, 179(2): 469-476.
[4]
Erasmus JJ, Mcadams HP, Connolly JE. Solitary pulmonary nodules: Part II. Evaluation of the indeterminate nodule[J].Radiographics, 2000, 20(1): 59-66.
[5]
Christensen J, Prosper AE, Wu CC, et al. ACR Lung-RADS v2022:assessment categories and management recommendations[J]. J Am Coll Radiol, 2024, 21(3): 473-488.
[6]
Yankelevitz DF, Reeves AP, Kostis WJ, et al. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation[J]. Radiology, 2000, 217(1): 251-256.
[7]
Bankier AA, Macmahon H, Colby T, et al. Fleischner society:glossary of terms for thoracic imaging[J]. Radiology, 2024,310(2): e232558.
[8]
刘旭俊, 陈代标, 黄春嘉. 不同性质孤立性肺小结节在高分辨率CT下边缘特征及内部特征的差异性分析[J]. 现代医用影像学,2024, 33(6): 1018-1021.
[9]
Park S, Lee SM, Kim S, et al. Volume doubling times of lung adenocarcinomas: correlation with predominant histologic subtypes and prognosis[J]. Radiology, 2020, 295(3): 703-712.
[10]
Lee YR, Choi YW, Lee KJ, et al. CT halo sign: the spectrum of pulmonary diseases[J]. Br J Radiol, 2005, 78(933): 862-865.
[11]
Chong S, Lee KS, Chung MJ, et al. Lung cancer screening with low-dose helical CT in Korea: experiences at the Samsung Medical Center[J]. J Korean Med Sci, 2005, 20(3): 402-408.
[12]
Li F, Sone S, Maruyama Y, et al. Correlation between highresolution computed tomographic, magnetic resonance and pathological findings in cases with non-cancerous but suspicious lung nodules[J]. Eur Radiol, 2000, 10(11): 1782-1791.
[13]
Woodring JH, Fried AM, Chuang VP. Solitary cavities of the lung:diagnostic implications of cavity wall thickness[J]. AJR Am J Roentgenol, 1980, 135(6): 1269-1271.
[14]
任琳. 不同病理类型孤立性肺结节的高分辨率CT特征及鉴别诊断[J]. 医疗装备, 2023, 36(4): 107-109+113.
[15]
Ma XB, Xu QL, Li N, et al. A decision tree model to distinguish between benign and malignant pulmonary nodules on CT scans[J].Eur Rev Med Pharmacol Sci, 2023, 27(12): 5692-5699.
[16]
白少君. 联合多种高分辨CT征象对肺内孤立结节良恶性鉴别诊断价值[J]. CT理论与应用研究, 2019, 28(1): 121-127.
[17]
何威, Yogi S, 程德云,等. 联合多种CT征象鉴别肺部病变良恶性的临床价值[J]. 四川大学学报(医学版), 2013, 44(3): 414-418.
[18]
刘成平, 汤砺, 何茂. 动态CT增强扫描对良恶性孤立性肺结节(SPN)的诊断价值研究[J]. 中国CT和MRI杂志, 2016, 14(7):58-60.
[19]
王文生. 多层螺旋CT动态增强扫描在孤立性肺结节中的应用价值[J]. 临床肺科杂志, 2013, 18(8): 1483-1484.
[20]
钟丽茹, 罗娜, 贺露瑶. 多个人工智能辅助诊断系统对肺结节的诊断效能比较[J]. 影像研究与医学应用, 2024, 8(17): 26-29.
[21]
Murphy JM, Gleeson FV, Flower CD. Percutaneous needle biopsy of the lung and its impact on patient management[J]. World J Surg, 2001, 25(3) : 373-378.
[22]
中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版)[J]. 中华结核和呼吸杂志, 2018, 41(10): 763-771.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[5] 谢田伟, 庞于樊, 吴丽. 超声引导下不同消融术对甲状腺良性结节体积缩减率、复发率的影响[J]. 中华普外科手术学杂志(电子版), 2025, 19(01): 80-83.
[6] 韩戟, 杨力, 陈玉. 腹部形态CT参数与完全腹腔镜全胃切除术术中失血量的关系研究[J]. 中华普外科手术学杂志(电子版), 2025, 19(01): 88-91.
[7] 韩婧, 郝少龙, 康骅. 北京市单中心甲状腺癌患者临床特征的回顾分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 490-493.
[8] 张腾花, 尚培中, 王晓梅, 李晓武, 王金, 苗建军, 刘冰. 外伤性脾破裂三阶梯分层治疗策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 510-512.
[9] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[10] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[11] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[12] 周迪, 全志伟. 规范化胆囊良性疾病诊治流程减少胆囊癌误诊误治[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 749-753.
[13] 郑大雯, 王健东. 胆囊癌辅助诊断研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 769-773.
[14] 李金星, 陈志宏, 孙铭均, 孙岩岩, 党树伟, 李广恩, 彭书奇, 付大伟, 李宏伟, 李国东. 基于多层螺旋CT 的腹腔干解剖变异与新分型研究[J]. 中华临床医师杂志(电子版), 2024, 18(08): 758-765.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(08): 787-792.
阅读次数
全文


摘要