切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 172 -178. doi: 10.3877/cma.j.issn.2095-5782.2023.02.013

综述

冷冻消融治疗周围型肺癌的应用现状与进展
李红佳1, 邢悦年1, 李时悦1, 钟长镐1,()   
  1. 1. 510120 广东广州,广州医科大学附属第一医院呼吸与危重症医学科;国家呼吸医学中心;国家呼吸系统疾病临床医学研究中心;呼吸疾病国家重点实验室;广州呼吸健康研究院
  • 收稿日期:2022-10-09 出版日期:2023-05-25
  • 通信作者: 钟长镐
  • 基金资助:
    2023年度呼吸疾病国家重点实验室自主课题(SKLRD-Z-202329)

Status and progress of cryoablation in the treatment of peripheral lung cancer

Hongjia Li1, Yuenian Xing1, Shiyue Li1, Changhao Zhong1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangzhou Medical University; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Disease; State Key Laboratory of Respiratory Disease; Guangzhou Institute of Respiratory Health, Guangdong Guangzhou 510120, China
  • Received:2022-10-09 Published:2023-05-25
  • Corresponding author: Changhao Zhong
引用本文:

李红佳, 邢悦年, 李时悦, 钟长镐. 冷冻消融治疗周围型肺癌的应用现状与进展[J]. 中华介入放射学电子杂志, 2023, 11(02): 172-178.

Hongjia Li, Yuenian Xing, Shiyue Li, Changhao Zhong. Status and progress of cryoablation in the treatment of peripheral lung cancer[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2023, 11(02): 172-178.

采用文献综述的方法,通过检索PubMed、Scopus、SinoMed、中华医学期刊全文数据库等数据库,对近年来国内外相关文献进行回顾分析,总结探讨冷冻消融治疗肺癌的机制、冷冻消融治疗周围型肺癌的应用现状与进展及优点与不足,以求为冷冻消融在周围型肺癌的应用提供更多的询证依据。

This paper reviews the literatures on cryoablation for peripheral lung cancer from PubMed, Scopus, SinoMed, Chinese Medical Ace Base. This review focuses on the mechanism of cryoablation for lung cancer, the current status and progress of cryoablation in peripheral lung cancer, as well as its advantages and disadvantages, in order to provide more evidence for the application of cryoablation in peripheral lung cancer.

表1 不同能量消融技术的比较
消融技术 作用机制 优势 不足
射频消融 将射频电极穿刺到病灶中,在高频电流的作用下,病灶组织内部产生热生物学效应,局部温度达到60℃以上,使蛋白质变性,细胞发生凝固性坏死 RFA电极适形性好;空气隔热可保护部分周围正常组织;临床应用较广 热沉降效应、受血流和气道影响较大,消融区域易碳化,导致阻抗升高,不利于能量传导,导致消融范围局限,消融时间长;有植入电生理装置的患者不建议使用
微波消融 微波电磁场作用下,肿瘤组织内水分子、蛋白质分子等极性分子产生极高速振动,造成分子之间的相互碰撞、相互摩擦,短时间内产生60~150℃的高温,使肿瘤发生凝固性坏死 无热沉降效应;消融时间短、消融范围大;微波电磁场传导及分布较RFA更快、更均匀,因此升温速率快、热能分布均匀 消融范围受组织性质如含水量影响大,术前预判消融效能有一定难度,需影像学动态监测;临床操作中易因功率过大、消融时间过长引起空洞、气胸出现
冷冻消融 利用超低温(-170℃至-140℃)的消融方式,使肿瘤局部快速冻结导致细胞内和细胞外的冰晶形成,从而破坏肿瘤细胞 消融范围边界清晰,易于监测;单针或多针治疗适形性更强;可用于已植入电生理装置的患者;诱导较强的免疫反应,可增敏全身抗瘤治疗 "冷休克""热池效应";术后易出现发热;凝血因子损耗出血风险增加
[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2]
曹毛毛, 陈万青. 中国恶性肿瘤流行情况及防控现状[J]. 中国肿瘤临床, 2019, 46(3): 145-149.
[3]
中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2022版)[J]. 中华肿瘤杂志, 2022, 44(6): 457-490.
[4]
Palussière J, Cazayus M, Cousin S, et al. Is there a tole for percutaneous ablation for early stage lung cancer? What is the evidence?[J]. Curr Oncol Rep, 2021, 23(7): 81.
[5]
肿瘤消融治疗专家委员会中国临床肿瘤学会CSCO, 中国医师协会肿瘤消融治疗技术专家组, 中国抗癌协会肿瘤消融治疗专业委员会, 等. 影像引导下热消融治疗原发性和转移性肺部肿瘤临床实践指南(2021年版)[J]. 中华内科杂志, 2021, 60(12): 1088-1105.
[6]
刘宝东, 叶欣, 范卫君, 等. 影像引导射频消融治疗肺部肿瘤专家共识(2018年版)[J]. 中国肺癌杂志, 2018, 21(2): 76-88.
[7]
Ye X, Fan W, Wang Z, et al. Clinical practice guidelines on image-guided thermal ablation of primary and metastatic lung tumors (2022 edition)[J]. J Cancer Res Ther, 2022, 18(5): 1213-1230.
[8]
张肖, 肖越勇, 李成利. 影像学引导下肺结节冷冻消融专家共识(2022版)[J]. 中国介入影像与治疗学, 2022, 19(1): 2-6.
[9]
Chan J, Lau R, Ngai J, et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with30 cases[J]. Transl Lung Cancer Res, 2021, 10(4): 1608-1622.
[10]
Zhong CH, Fan M Y, Xu H, et al. Feasibility and safety of radiofrequency ablation guided by bronchoscopic transparenchymal nodule access in canines[J]. Respiration, 2021, 100(11): 1097-1104.
[11]
Motooka Y, Fujino K, Gregor A, et al. Endobronchial ultrasound-guided radiofrequency ablation of lung tumors and mediastinal lymph nodes: a preclinical study in animal lung tumor and mediastinal adenopathymodels[J]. Semin Thorac Cardiovasc Surg, 2020, 32(3): 570-578.
[12]
Chan J, Lau R, Ngai J, et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with30 cases[J]. Transl Lung Cancer Res, 2021, 10(4): 1608-1622.
[13]
Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices[J]. J Vasc Interv Radiol, 2010, 21(8 Suppl): S187-S191.
[14]
智雅婧. 氩氦刀冷冻消融治疗非小细胞肺癌的应用进展[J].世界最新医学信息文摘, 2020(94): 137-140.
[15]
Baust JG, Gage AA. The molecular basis of cryosurgery[J]. BJU Int, 2005, 95(9): 1187-1191.
[16]
Niu L, Zhou L, Korpan NN, et al. Experimental study on pulmonary cryoablation in a porcine model of normal lungs[J]. Technol Cancer Res Treat, 2012, 11(4): 389-394.
[17]
Hinshaw JL, Lee FJ, Laeseke PF, et al. Temperature isotherms during pulmonary cryoablation and their correlation with the zone of ablation[J]. J Vasc Interv Radiol, 2010, 21(9): 1424-1428.
[18]
王德忱. CT引导下经皮肺穿刺氩氦冷冻消融术治疗肺癌的效果[J]. 中国医疗器械信息, 2017, 23(21): 77-78.
[19]
Zheng X, Yuan H, Gu C, et al. Transbronchial lung parenchyma cryoablation with a novel flexible cryoprobe in an in vivo porcine model[J]. Diagn Interv Imaging, 2022, 103(1): 49-57.
[20]
Wrobel MM, Bourgouin PP, Abrishami KM, et al. Active versus passive thaw after percutaneous cryoablation of pulmonary tumors: effect on incidence, grade, and onset of hemoptysis[J]. AJR Am J Roentgenol, 2021, 217(5): 1153-1163.
[21]
曾健滢, 施娟娟, 牛涛, 等. 3次循环冷冻治疗进展期非小细胞肺癌近期疗效[J]. 介入放射学杂志, 2018, 27(11): 1085-1089.
[22]
Yashiro H, Nakatsuka S, Inoue M, et al. Factors affecting local progression after percutaneous cryoablation of lung tumors[J].J Vasc Interv Radiol, 2013, 24(6): 813-821.
[23]
柳德灵, 赖国祥, 林庆安, 等. CT引导下经皮肺穿刺活检并发症1 324例分析[J]. 国际呼吸杂志, 2018, 38(1): 26-32.
[24]
李向阳, 穆峰, 陈继冰, 等. CT引导下经皮冷冻消融治疗肺磨玻璃结节的研究[J]. 介入放射学杂志, 2021, 30(10): 1072-1076.
[25]
Inoue M, Nakatsuka S, Jinzaki M. Cryoablation of early-stage primary lung cancer[J]. Biomed Res Int, 2014, 2014: 521691.
[26]
Callstrom MR, Woodrum DA, Nichols FC, et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation(SOLSTICE)[J]. J Thorac Oncol, 2020, 15(7):1200-1209.
[27]
de Baère T, Woodrum D, Tselikas L, et al. The ECLIPSE study: efficacy of cryoablation on metastatic lung tumors with a 5-year follow-up[J]. J Thorac Oncol, 2021, 16(11): 1840-1849.
[28]
Nomori H, Yamazaki I, Shiraishi A, et al. Cryoablation for T1N0M0 non-small cell lung cancer using liquid nitrogen[J]. Eur J Radiol, 2020, 133: 109334.
[29]
曹非, 王艳, 刘长富, 等. 氩氦冷冻消融联合全身化疗治疗ⅢB/Ⅳ期肺鳞状细胞癌的疗效分析[J]. 介入放射学杂志, 2018, 27(11): 1045-1050.
[30]
王婷, 张杰. 介入呼吸病学年度进展2021[J]. 中华结核和呼吸杂志, 2022, 45(1): 88-94.
[31]
Duan H, Li X, Long X, et al. Safety, feasibility, and effectiveness of a novel spray cryotherapy technique in a canine model[J]. Clin Transl Med, 2021, 11(2): e315.
[32]
Wang K, Sun J, Gao W, et al. Feasibility, effectiveness, and safety of a novel cryo-balloon targeted lung denervation technique in an animal model[J]. Cryobiology, 2020, 93: 27-32.
[33]
Kohno M, Hashimoto R, Oiwa K, et al. Initial experience with transbronchial cryoablation as a novel local treatment for malignant peripheral lung lesions[J]. BMJ Open Respir Res, 2018, 5(1): e315.
[34]
马洋洋, 陈继冰, 牛立志. 氩氦冷冻消融在肺癌多学科综合治疗中的研究进展[J]. 介入放射学杂志, 2020, 29(4): 423-428.
[35]
张云嵩, 蔡迎玖, 陈田子, 等. 氩氦刀冷冻消融治疗肺癌的研究进展[J]. 癌症进展, 2018, 16(3): 272-274.
[36]
张燕. 氩氦靶向冷冻消融治疗肺癌的适应证及并发症[J]. 中国临床医生杂志, 2018, 46(10): 1138-1140.
[37]
Palussière J, Catena V, Buy X. Percutaneous thermal ablation of lung tumors-Radiofrequency, microwave and cryotherapy: where are we going?[J]. Diagn Interv Imaging, 2017, 98(9): 619-625.
[38]
李泉旺, 胡明昕, 孙韬, 等. 氩氦刀冷冻治疗晚期肺癌术后并发症的防治[J]. 肿瘤防治研究, 2011, 38(5): 554-556.
[39]
Ferrer-Mileo L, Luque BA, González-Barboteo J. Efficacy of cryoablation to control cancer pain: a systematic review[J]. Pain Pract, 2018, 18(8): 1083-1098.
[40]
王猛, 周志刚, 杜可朴, 等. 氩氦刀冷冻消融与射频消融对Ⅰ期非小细胞肺癌的疗效对比分析[J]. 中华医学杂志, 2022(31): 2458-2464.
[41]
Shao Q, O'Flanagan S, Lam T, et al. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions[J]. Int J Hyperthermia, 2019, 36(1): 130-138.
[42]
Aarts BM, Klompenhouwer EG, Rice SL, et al. Cryoablation and immunotherapy: an overview of evidence on its synergy[J]. Insights Imaging, 2019, 10(1): 53.
[43]
Suzuki K, Watanabe SI, Wakabayashi M, et al. A single-arm study of sublobar resection for ground-glass opacity dominant peripheral lung cancer[J]. J Thorac Cardiovasc Surg, 2022, 163(1): 289-301.
[44]
Shigefuku S, Shimada Y, Hagiwara M, et al. Prognostic significance of ground-glass opacity components in 5-year survivors with resected lung adenocarcinoma[J]. Ann Surg Oncol, 2021, 28(1): 148-156.
[1] 罗剑, 盛文飞, 马佳铭, 李俊. 氩氦刀冷冻消融联合TACE治疗巨大肝癌对免疫功能的影响[J]. 中华普外科手术学杂志(电子版), 2021, 15(03): 298-301.
[2] 张瑞敏, 于杰, 于晓玲. 早期肾细胞癌的影像引导消融治疗[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 381-384.
[3] 李永红. 超声引导下前列腺冷冻消融术[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(06): 0-0.
[4] 何继强, 任安伟, 王飞. 周围型肺癌CT特征与PCNA、VEGF及Bcl-2表达水平的相关性[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 527-529.
[5] 赵芬田, 于洪福, 李坤泽, 赵家亮. 不同病理类型周围型肺癌CT影像征象分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 370-372.
[6] 房延凤, 李王平, 顾兴, 潘蕾, 张红军, 金发光. 超细支气管镜联合EBUS-GS对周围型肺癌诊断效能及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2017, 10(04): 406-409.
[7] 周亮, 陈志贤, 潘忠保, 李蓉蓉, 李书英, 金利, 牛立志. 超声引导下经皮微波消融与冷冻消融治疗高风险部位肝癌的对照研究[J]. 中华介入放射学电子杂志, 2019, 07(03): 190-196.
[8] 刘庆华, 姚周虹, 万云焱, 林殿杰. 有创技术在胸腔积液诊断中的应用价值[J]. 中华诊断学电子杂志, 2014, 02(03): 167-174.
[9] 卫锐狮, 马捷, 李新华, 俞建荣. 儿童原发周围型肺黏液表皮样癌手术治疗1例并文献复习[J]. 中华胸部外科电子杂志, 2023, 10(02): 106-110.
阅读次数
全文


摘要