切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2021, Vol. 09 ›› Issue (03) : 313 -318. doi: 10.3877/cma.j.issn.2095-5782.2021.03.013

基础研究

大鼠急性肺栓塞模型的建立及CD147表达水平对栓塞大鼠肺动脉压力变化的影响
卢光东1, 贾振宇1, 张金星1, 赵林波1, 施海彬1,()   
  1. 1. 210029 江苏南京,南京医科大学第一附属医院介入放射科
  • 收稿日期:2021-01-23 出版日期:2021-08-25
  • 通信作者: 施海彬
  • 基金资助:
    国家自然科学基金(82001933); 江苏省科技项目(BL2014087)

The establishment of acute pulmonary embolism model and the effects of CD147 expression level on the pulmonary arterial pressure in embolized rats

Guangdong Lu1, Zhenyu Jia1, Jinxing Zhang1, Linbo Zhao1, Haibin Shi1,()   

  1. 1. Department of Interventional Radiology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Nanjing 210029, China.
  • Received:2021-01-23 Published:2021-08-25
  • Corresponding author: Haibin Shi
引用本文:

卢光东, 贾振宇, 张金星, 赵林波, 施海彬. 大鼠急性肺栓塞模型的建立及CD147表达水平对栓塞大鼠肺动脉压力变化的影响[J]. 中华介入放射学电子杂志, 2021, 09(03): 313-318.

Guangdong Lu, Zhenyu Jia, Jinxing Zhang, Linbo Zhao, Haibin Shi. The establishment of acute pulmonary embolism model and the effects of CD147 expression level on the pulmonary arterial pressure in embolized rats[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2021, 09(03): 313-318.

目的

通过介入技术建立制作简单、可重复性高的大鼠急性肺栓塞(APE)模型,并初步探讨APE后肺组织中CD147表达变化对肺动脉压力变化的影响。

方法

采用经右侧股静脉置鞘注射Sephadex G-50葡聚糖微球的方法建立APE模型。将48只SD大鼠随机分为假手术组、anti-CD147对照组、APE组及anti-CD147干预组,测量每组中6只大鼠建模后5、10、20、30、40、50和60 min平均肺动脉压(mPAP);每组中另外6只在建模后24 h测量其mPAP,并测定肺组织中髓过氧化物酶(MPO)活性、CD147表达及血浆中肿瘤坏死因子(TNF-α)、白细胞介素-6(IL-6)的表达。

结果

模型建立技术成功率为100%,建模大鼠死亡率为22.6%。与假手术组相比,APE组大鼠mPAP在建模后明显升高(P < 0.01),其肺组织中MPO活性在建模后24 h明显增加(P < 0.01),血浆中TNF-α和IL-6及肺组织中CD147蛋白表达水平均明显升高(P < 0.01)。CD147单克隆抗体干预能显著降低APE大鼠建模后50 min、60 min及24 h时的mPAP,显著降低建模24 h后其血浆中TNF-α和IL-6表达水平及肺组织MPO活性和CD147表达水平。

结论

本研究通过介入技术制作了一种简单、可重复性高的大鼠APE模型,并用该模型初步证实CD147通过促进炎症反应参与了APE后肺动脉压力的升高。

Objective

To establish a rat model of acutepulmonaryembolism (APE) through interventional technique and to observe the changes of mean pulmonary arterial pressure (mPAP) following inhibition of CD147 in APE models.

Methods

The APE model was induced by catheterization and intravenous injection of Sephadex G-50 microspheres through femoral vein in Sprague-Dawley (SD) rats. Forty-eight rats were randomly assigned to sham, sham + anti-CD147, APE, and APE + anti-CD147 groups. mPAP was measured at 5, 10, 20, 30, 40, 50, and 60 minutes after APE induction in 6 animals in each group. For the other 6 rats in each group, mPAP was measured 24 h after APE and these animals were sacrificed to detect the level of TNF-α and IL-6 in plasma, the myeloperoxidase (MPO) activity and the expression of CD147 in lung tissue.

Results

The technical success rate of modeling was 100% and the mortality rate of modeling rats was 22.6%. Compared with the Sham group, the mPAP in the APE group increased significantly within one hour and at 24 hours after embolism (P < 0.01); the TNF-α and IL-6 levels in plasma, the MPO activity and the expression of CD147 in the lung tissue also increased significantly (P < 0.01). The anti-CD147 intervention attenuated APE-induced increases in mPAP at 50 minutes, 60 minutes and 24 hours and this effect was associated with reduced neutrophil infiltration and decreased levels of TNF-α and IL-6 in plasma.

Conclusions

We established an easily reproducible rat model of APE with interventional technique and preliminarily confirmed that CD147 was involved in the increase of pulmonary arterial pressure after APE by promoting inflammation.

图1 假手术组和APE组大鼠肺组织外观
图2 各组大鼠建模后60 min内及24 h后mPAP的变化及比较
图3 APE建模24 h后各组大鼠肺组织病理切片(×400)
图4 各组大鼠建模24 h后肺组织中髓过氧化物酶活性及血浆中TNF-α、IL-6水平的比较
图5 各组大鼠肺组织中CD147表达水平的比较
[1]
中华医学会心血管病学分会肺血管病学组. 急性肺栓塞诊断与治疗中国专家共识(2015)[J]. 中华心血管病杂志, 2016, 44(3): 197-211.
[2]
Konstantinides SV, Meyer G. The 2019 ESC guidelines on the diagnosis and management of acute pulmonary embolism[J]. Eur Heart J, 2019, 40(42): 3453-3455.
[3]
Sanchez O, Trinquart L, Colombet I, et al. Prognostic value of right ventricular dysfunction in patients with haemodynamically stable pulmonary embolism: a systematic review[J]. Eur Heart J, 2008, 29(12): 1569-1577.
[4]
Souza-Costa DC, Figueiredo-Lopes L, Alves-Filho JC, et al. Protective effects of atorvastatin in rat models of acute pulmonary embolism: involvement of matrix metalloproteinase-9[J]. Crit Care Med, 2007, 35(1): 239-245.
[5]
Tanus-Santos JE, Gordo WM, Udelsmann A, et al. The hemodynamic effects of endothelin receptor antagonism duringa venous air infusion in dogs[J]. Anesth Analg, 2000, 90(1):102-106.
[6]
Battistini B. Modulation and roles of the endothelins in the pathophysiology of pulmonary embolism[J]. Can J Physiol Pharmacol, 2003, 81(6): 555-569.
[7]
Fernandez-Patron C, Stewart KG, Zhang Y, et al. Vascular matrix metalloproteinase-2-dependent cleavage of calcitonin gene-related peptide promotes vasoconstriction[J]. Circ Res, 2000, 87(8): 670-676.
[8]
Martínez A, Oh HR, Unsworth EJ, et al. Matrix metalloproteinase-2 cleavage of adrenomedullin producea vasoconstrictor out of a vasodilator[J]. Biochem J, 2004, 383(3): 413-418.
[9]
Dawar FU, Xiong Y, Khattak MNK, et al. Potential role of cyclophilin A in regulating cytokine secretion[J]. J Leukoc Biol, 2017 10, 102(4): 989-992.
[10]
Runyon MS, Gellar MA, Sanapareddy N, et al. Development and comparison of a minimally-invasive model of autologous clot pulmonary embolism in Sprague-Dawley and Copenhagen rats[J]. Thromb J, 2010, 8: 3.
[11]
Palei AC, Zaneti RA, Fortuna GM, et al. Hemodynamic benefits of matrix metalloproteinase-9 inhibition by doxycycline during experimental acute pulmonary embolism[J]. Angiology, 2005, 56(5): 611-617.
[12]
Toba M, Nagaoka T, Morio Y, et al. Involvement of Rho kinase in the pathogenesis of acute pulmonary embolism-induced polystyrene microspheres in rats[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 298(3): 297-303.
[13]
Tanus-Santos JE, Theodorakis MJ. Is there a place for inhaled nitric oxide in the therapy of acute pulmonary embolism?[J]. Am J Respir Med, 2002, 1(3): 167-176.
[14]
Smulders YM. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction[J]. Cardiovasc Res, 2000, 48(1): 23-33.
[15]
Neto-Neves EM, Dias-Junior CA, Rizzi E, et al. Metalloproteinase inhibition protects against cardiomyocyte injury during experimental acute pulmonary thromboembolism[J]. Crit Care Med, 2011, 39(2): 349-356.
[16]
Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade[J]. Crit Rev Biochem Mol Biol, 2013, 48(3): 222-272.
[17]
Fernandez-Patron C, Zouki C, Whittal R, et al. Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through generation of endothelin-1[1-32][J]. FASEB J, 2001, 15(12): 2230-2240.
[18]
Fernandez-Patron C, Radomski MW, Davidge ST. Vascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor[J]. Circ Res, 1999, 85(10): 906-911.
[19]
Hao L, Du M, Lopez-Campistrous A, et al. Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway[J]. Circ Res, 2004, 94(1): 68-76.
[20]
Fortuna GM, Figueiredo-Lopes L, Dias-Junior CA, et al. A role for matrix metalloproteinase-9 in the hemodynamic changes following acute pulmonary embolism[J]. Int J Cardiol, 2007, 114(1): 22-27.
[21]
Li L, Crockett E, Wang DH, et al. Gene transfer of endothelial NO synthase and manganese superoxide dismutase on arterial vascular cell adhesion molecule-1 expression and superoxide production in deoxycorticosterone acetate-salt hypertension[J]. Arterioscler Thromb Vasc Biol, 2002, 22(2): 249-255.
[22]
Garcia SRR, Minnear FL, Bizios R, et al. Role of thromboxane in the pulmonary response to pulmonary microembolization[J]. Chest, 1983, 83(5): 76S-78S.
[23]
Ghuysen A, Lambermont B, Dogné JM, et al. Effect of BM-573 [N-terbutyl-N'-[2-(4'-methylphenylamino)-5-nitro-benzenesulfonyl]urea], a dual thromboxane synthase inhibitor and thromboxane receptor antagonist, in a porcine model of acute pulmonary embolism[J]. J Pharmacol Exp Ther, 2004, 310(3): 964-972.
[24]
Seizer P, Ungern-Sternberg SN, Schonberger T, et al. Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo[J]. Arterioscler Thromb Vasc Biol, 2015, 35(3): 655-663.
[1] 黄钰清, 武杜杜, 潘菲, 王俊康, 钟兆明, 黎檀实, 吕发勤. 掌上超声在枪弹伤致髂动脉破裂大出血建模中的应用研究[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1112-1117.
[2] 李传举, 刘林月, 王美, 李昕, 韩祥辉, 贾海永. 乙型肝炎病毒感染模型研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 361-365.
[3] 赵海剑, 赵欣, 陈宁, 王健, 朱伦, 张晓雨, 黎珩. 不同状态小肠水通道蛋白3的表达分析及其临床意义[J]. 中华普通外科学文献(电子版), 2023, 17(05): 342-345.
[4] 吴畏, 吴永哲, 李宗倍, 崔宏力, 李华志, 许臣. 轻质大网孔补片腹腔镜下疝修补术治疗老年腹股沟疝的疗效及炎症因子的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 70-73.
[5] 林涛, 胡小强. 成人腹股沟疝开放及腹腔镜术后炎性反应及并发症比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 47-51.
[6] 张帅, 袁媛, 邢振川, 王焕勇, 张虹霞. 71例急性肺血栓栓塞症并发肺梗死临床特征[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 566-568.
[7] 郭丹, 冯琪雅, 吕丛海, 王波, 卢伟. 胸腔镜下肺叶切除术治疗非小细胞肺癌的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 110-112.
[8] 邵世锋, 伍正彬, 段朝霞, 张良潮, 王耀丽, 李琦, 王建民. 山羊高原重度原发性肺冲击伤模型的建立[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 637-642.
[9] 张立夏, 高泽宾, 庞停, 张越群. 银杏叶提取物联合尿激酶治疗急性肺栓塞的疗效及对CYS-C、NT-ProBNP、TnI与D-D的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 733-735.
[10] 尹婷婷, 刘基, 王康, 陈忠. CT肺动脉阻塞指数与血清D-二聚体、PLR水平的相关性分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 521-523.
[11] 欧敏, 王斌, 张明周, 董俊康, 刘禹, 廖品亮, 任合玲, 姜欣, 蔡晓莲. 心电图及心脏超声在急性肺栓塞诊断及危险分层中的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 502-505.
[12] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[15] 高飞, 李惠凯, 冯秀雪, 杜晨, 韩珂, 柴宁莉, 令狐恩强. 3%聚桂醇消融动物囊性肿瘤模型的有效性和安全性研究[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 31-36.
阅读次数
全文


摘要