切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2020, Vol. 08 ›› Issue (04) : 364 -369. doi: 10.3877/cma.j.issn.2095-5782.2020.04.014

所属专题: 文献

综述

载药栓塞材料在肝癌治疗中的应用
石钦1, 周晨1, 刘家成1, 黄松江1, 杨崇图1, 熊斌1,()   
  1. 1. 430022 湖北武汉,华中科技大学同济医学院附属协和医院放射科,分子影像湖北省重点实验室
  • 收稿日期:2020-07-02 出版日期:2020-11-25
  • 通信作者: 熊斌
  • 基金资助:
    国家自然科学基金(81873917)

Application of drug-loaded embolic agents in the treatment of hepatocellular carcinoma

Qin Shi1, Chen Zhou1, Jiacheng Liu1, Songjiang Huang1, Chongtu Yang1, Bin Xiong1,()   

  1. 1. Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province Key Laboratory of Molecular Imaging, Hubei Wuhan 430022, China
  • Received:2020-07-02 Published:2020-11-25
  • Corresponding author: Bin Xiong
  • About author:
    Corresponding author: Xiong Bin, Email:
引用本文:

石钦, 周晨, 刘家成, 黄松江, 杨崇图, 熊斌. 载药栓塞材料在肝癌治疗中的应用[J]. 中华介入放射学电子杂志, 2020, 08(04): 364-369.

Qin Shi, Chen Zhou, Jiacheng Liu, Songjiang Huang, Chongtu Yang, Bin Xiong. Application of drug-loaded embolic agents in the treatment of hepatocellular carcinoma[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2020, 08(04): 364-369.

原发性肝癌是全球最常见的恶性肿瘤之一,其发病率和死亡率均居前列。肝动脉化疗栓塞(transarterial chemoembolization,TACE)是中晚期肝癌的首选治疗手段,通过将栓塞剂和化疗药物混合靶向递送至肿瘤区域,实现局部缺血坏死的同时减少药物全身副作用。其中,栓塞材料在TACE抗肝癌的功效中起着至关重要的作用。目前,已有多种栓塞材料通过不同的载药机制与化疗药物结合,并应用于肝癌治疗。本文就目前研发的载药栓塞材料在肝癌中的应用作一综述。

Primary liver cancer is one of the most common malignant tumors in the world with high morbidity and mortality. Transarterial chemoembolization (TACE) is the preferred treatment for advanced liver cancer. It can cause tumor ischemic necrosis while reducing systemic adverse events through the targeted delivery of embolic agent and chemotherapy drug. The embolic agent plays a crucial role in the treatment of liver cancer. At present, many embolic agents can be combined with chemotherapy drugs through various drug-loaded mechanisms, and they are further applied in the treatment of liver cancer. This article reviews the application of drug-loaded embolic agents in the treatment of liver cancer.

表1 有关DEB的载药机制及在肝癌中的应用
[1]
Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462.
[2]
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J].J Hepatol, 2018, 69(1): 182-236.
[3]
Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization[J]. J Vasc Interv Radiol, 2006, 17(2 Pt 1): 335-342.
[4]
Liapi E, Geschwind JF. Transcatheter arterial chemoembolization for liver cancer: is it time to distinguish conventional from drug-eluting chemoembolization?[J]. Cardiovasc Intervent Radiol, 2011, 34(1): 37-49.
[5]
Alshehri AM, Wilson OC, Dahal B, et al. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs[J]. Colloids Surf B Biointerfaces, 2017, 159: 945-955.
[6]
Guiu B, Hincapie G, Thompson L, et al. An in vitro evaluation of four types of drug-eluting embolics loaded with idarubicin[J].J Vasc Interv Radiol, 2019, 30(8): 1303-1309.
[7]
Song MJ, Park CH, Kim JD, et al. Drug-eluting bead loaded with doxorubicin versus conventional lipiodol-based transarterial chemoembolization in the treatment of hepatocellular carcinoma: a case-control study of Asian patients[J]. Eur J Gastroenterol Hepatol, 2011, 23(6): 521-527.
[8]
Golfieri R, Giampalma E, Renzulli M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma[J]. Br J Cancer, 2014, 111(2): 255-264.
[9]
Sacco R, Bargellini I, Bertini M, et al. Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma[J]. J Vasc Interv Radiol, 2011, 22(11): 1545-1552.
[10]
Zhang S, Huang C, Li Z, et al. Comparison of pharmacokinetics and drug release in tissues after transarterial chemoembolization with doxorubicin using diverse lipiodol emulsions and CalliSpheres beads in rabbit livers[J]. Drug Deliv, 2017, 24(1): 1011-1017.
[11]
Liang B, Zhao D, Liu Y, et al. Chemoembolization of liver cancer with doxorubicin-loaded CalliSpheres microspheres: plasma pharmacokinetics, intratumoral drug concentration, and tumor necrosis in a rabbit model[J]. Drug Deliv Transl Res, 2020, 10(1): 185-191.
[12]
Liang B, Xiang H, Ma C, et al. Comparison of chemoembolization with CalliSpheres microspheres and conventional chemoembolization in the treatment of hepatocellular carcinoma: a multicenter retrospective study[J]. Cancer Manag Res, 2020, 12: 941-956.
[13]
Wang CY, Xia JG, Yang ZQ, et al. Transarterial chemoembolization with medium-sized doxorubicin-eluting Callisphere is safe and effective for patients with hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 4434.
[14]
Malagari K, Pomoni M, Moschouris H, et al. Chemoembolization of hepatocellular carcinoma with HepaSphere 30-60 μm. Safety and efficacy study[J]. Cardiovasc Intervent Radiol, 2014, 37(1): 165-175.
[15]
Guiu B, Colombat S, Piron L, et al. Transarterial chemoembolization of hepatocellular carcinoma with idarubicin-loaded tandem drug-eluting embolics[J]. Cancers (Basel), 2019, 11(7).
[16]
Aliberti C, Carandina R, Sarti D, et al. Hepatic arterial infusion of polyethylene glycol drug-eluting beads for primary and metastatic liver cancer therapy[J]. Anticancer Res, 2016, 36(7): 3515-3521.
[17]
Sharma KV, Bascal Z, Kilpatrick H, et al. Long-term biocompatibility, imaging appearance and tissue effects associated with delivery of a novel radiopaque embolization bead for image-guided therapy[J]. Biomaterials, 2016, 103: 293-304.
[18]
Levy EB, Krishnasamy VP, Lewis AL, et al. First human experience with directly image-able iodinated embolization microbeads[J]. Cardiovasc Intervent Radiol, 2016, 39(8): 1177-1186.
[19]
Chung EY, Kim HM, Lee GH, et al. Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging[J]. Carbohydr Polym, 2012, 90(4): 1725-1731.
[20]
Li ZY, Qin XY, Guo LY, et al. Poly(acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization and MRI detectability: in vitro and in vivo evaluation[J]. Int J Pharm, 2017, 527(1-2): 31-41.
[21]
Wang Q, Qian K, Liu S, et al. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization[J]. Biomacromolecules, 2015, 16(4): 1240-1246.
[22]
Zeng J, Li L, Zhang H, et al. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization[J]. Theranostics, 2018, 8(17): 4591-4600.
[23]
Iezzi R, Pompili M, Rinninella E, et al. TACE with degradable starch microspheres (DSM-TACE) as second-line treatment in HCC patients dismissing or ineligible for sorafenib[J]. Eur Radiol, 2019, 29(3): 1285-1292.
[24]
Tang S, Zhou H, Wu Q, et al. Porous PLGA microspheres with recruited ions and doxorubicin for triple-combination therapy of larger hepatocellular carcinoma[J]. J Mater Chem B, 2017, 5(45): 9025-9032.
[25]
Choi JW, Park JH, Cho HR, et al. Sorafenib and 2,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization ofa liver tumor[J]. Sci Rep, 2017, 7(1): 554.
[26]
Wang Y, Benzina A, Molin DGM, et al. Preparation and structure of drug-carrying biodegradable microspheres designed for transarterial chemoembolization therapy[J]. J Biomater Sci Polym Ed, 2015, 26(2): 77-91.
[27]
Wang Y, Molin DGM, Sevrin C, et al. In vitro and in vivo evaluation of drug-eluting microspheres designed for transarterial chemoembolization therapy[J]. Int J Pharm, 2016, 503(1-2): 150-162.
[28]
Zhao H, Zheng C, Feng G, et al. Temperature-sensitive poly(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as an embolic agent: distribution, durability of vascular occlusion, and inflammatory reactions in the renal artery of rabbits[J]. AJNR Am J Neuroradiol, 2013, 34(1): 169-176.
[29]
Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor[J]. J Control Release, 2015, 212: 41-49.
[30]
Huang L, Shen M, Li R, et al. Thermo-sensitive composite hydrogels based on poloxamer 407 and alginate and their therapeutic effect in embolization in rabbit VX2 liver tumors[J]. Oncotarget, 2016, 7(45): 73280-73291.
[31]
Poursaid A, Jensen MM, Nourbakhsh I, et al. Silk-elastinlike protein polymer liquid chemoembolic for localized release of doxorubicin and sorafenib[J]. Mol Pharm, 2016, 13(8): 2736-2748.
[32]
Lym JS, Nguyen QV, Ahn DW, et al. Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy[J]. Acta Biomater, 2016, 41: 253-263.
[33]
Nguyen QV, Lym JS, Huynh CT, et al. A novel sulfamethazine-based pH-sensitive copolymer for injectable radiopaque embolic hydrogels with potential application in hepatocellular carcinoma therapy[J]. Polym Chem, 2016, 7(37): 5805-5818.
[34]
Huynh CT, Nguyen QV, Lym JS, et al. Intraarterial gelation of injectable cationic pH/temperature-sensitive radiopaque embolic hydrogels in a rabbit hepatic tumor model and their potential application for liver cancer treatment[J]. RSC Adv, 2016, 6(53): 47687-47697.
[35]
Hu J, Albadawi H, Chong BW, et al. Advances in biomaterials and technologies for vascular embolization[J]. Adv Mater, 2019, 31(33): e1901071.
[1] 徐耀博, 吴斌全. 三维可视化技术结合术中超声在可切除肝癌腹腔镜手术的应用[J]. 中华普通外科学文献(电子版), 2022, 16(04): 273-277.
[2] 张宇珂, 杜顺达, 毛一雷. 尿液检测在原发性肝癌中的应用[J]. 中华普通外科学文献(电子版), 2022, 16(03): 225-230.
[3] 周保富, 吴乐乐, 李永红, 胡世超. 肝切除术中不同断肝方式治疗多病灶原发性肝癌的临床效果研究[J]. 中华普通外科学文献(电子版), 2022, 16(03): 205-209.
[4] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[5] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[6] 董奕琦, 罗耀兵, 刘涛, 张岚, 杨明. 血流拓扑学肝分段与Couinaud肝分段在原发性肝癌术前评估及手术规划中的应用价值[J]. 中华普外科手术学杂志(电子版), 2022, 16(04): 423-426.
[7] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[8] 赫嵘, 贾哲, 张珂, 李代京, 张萌, 蒋力. 基于PSM分析腹腔镜肝切除联合Hassab术治疗合并门静脉高压症肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 376-383.
[9] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[10] 吴雅琴, 莫伟, 向华, 李琴, 李玉莲, 周碧芳. 肝癌患者介入术后股动脉穿刺处出血的研究进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 352-356.
[11] 黄学卿, 魏楠, 蒋天鹏, 安天志, 王黎洲, 许敏, 周石. 超声引导经远端桡动脉入路行肝癌TACE术的临床研究[J]. 中华介入放射学电子杂志, 2023, 11(03): 251-256.
[12] 董艳超, 牛洪涛. 封堵球囊微导管在超选择性动脉栓塞时应用价值与安全性综述[J]. 中华介入放射学电子杂志, 2023, 11(02): 164-171.
[13] 曾嘉, 何东风. 介入栓塞材料在肝癌治疗中的研究进展[J]. 中华介入放射学电子杂志, 2023, 11(01): 62-67.
[14] 吴蓝, 冯建宇. 肝癌TACE术中应用利多卡因的效果观察[J]. 中华介入放射学电子杂志, 2022, 10(03): 333-338.
[15] 任健吾, 刘圣, 施海彬, 杨魏, 田伟, 周卫忠. 经左侧远桡动脉入路在肝动脉化疗栓塞术中的应用[J]. 中华介入放射学电子杂志, 2022, 10(03): 241-244.
阅读次数
全文


摘要