[1] |
Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462.
|
[2] |
European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma[J].J Hepatol, 2018, 69(1): 182-236.
|
[3] |
Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization[J]. J Vasc Interv Radiol, 2006, 17(2 Pt 1): 335-342.
|
[4] |
Liapi E, Geschwind JF. Transcatheter arterial chemoembolization for liver cancer: is it time to distinguish conventional from drug-eluting chemoembolization?[J]. Cardiovasc Intervent Radiol, 2011, 34(1): 37-49.
|
[5] |
Alshehri AM, Wilson OC, Dahal B, et al. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs[J]. Colloids Surf B Biointerfaces, 2017, 159: 945-955.
|
[6] |
Guiu B, Hincapie G, Thompson L, et al. An in vitro evaluation of four types of drug-eluting embolics loaded with idarubicin[J].J Vasc Interv Radiol, 2019, 30(8): 1303-1309.
|
[7] |
Song MJ, Park CH, Kim JD, et al. Drug-eluting bead loaded with doxorubicin versus conventional lipiodol-based transarterial chemoembolization in the treatment of hepatocellular carcinoma: a case-control study of Asian patients[J]. Eur J Gastroenterol Hepatol, 2011, 23(6): 521-527.
|
[8] |
Golfieri R, Giampalma E, Renzulli M, et al. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma[J]. Br J Cancer, 2014, 111(2): 255-264.
|
[9] |
Sacco R, Bargellini I, Bertini M, et al. Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma[J]. J Vasc Interv Radiol, 2011, 22(11): 1545-1552.
|
[10] |
Zhang S, Huang C, Li Z, et al. Comparison of pharmacokinetics and drug release in tissues after transarterial chemoembolization with doxorubicin using diverse lipiodol emulsions and CalliSpheres beads in rabbit livers[J]. Drug Deliv, 2017, 24(1): 1011-1017.
|
[11] |
Liang B, Zhao D, Liu Y, et al. Chemoembolization of liver cancer with doxorubicin-loaded CalliSpheres microspheres: plasma pharmacokinetics, intratumoral drug concentration, and tumor necrosis in a rabbit model[J]. Drug Deliv Transl Res, 2020, 10(1): 185-191.
|
[12] |
Liang B, Xiang H, Ma C, et al. Comparison of chemoembolization with CalliSpheres microspheres and conventional chemoembolization in the treatment of hepatocellular carcinoma: a multicenter retrospective study[J]. Cancer Manag Res, 2020, 12: 941-956.
|
[13] |
Wang CY, Xia JG, Yang ZQ, et al. Transarterial chemoembolization with medium-sized doxorubicin-eluting Callisphere is safe and effective for patients with hepatocellular carcinoma[J]. Sci Rep, 2020, 10(1): 4434.
|
[14] |
Malagari K, Pomoni M, Moschouris H, et al. Chemoembolization of hepatocellular carcinoma with HepaSphere 30-60 μm. Safety and efficacy study[J]. Cardiovasc Intervent Radiol, 2014, 37(1): 165-175.
|
[15] |
Guiu B, Colombat S, Piron L, et al. Transarterial chemoembolization of hepatocellular carcinoma with idarubicin-loaded tandem drug-eluting embolics[J]. Cancers (Basel), 2019, 11(7).
|
[16] |
Aliberti C, Carandina R, Sarti D, et al. Hepatic arterial infusion of polyethylene glycol drug-eluting beads for primary and metastatic liver cancer therapy[J]. Anticancer Res, 2016, 36(7): 3515-3521.
|
[17] |
Sharma KV, Bascal Z, Kilpatrick H, et al. Long-term biocompatibility, imaging appearance and tissue effects associated with delivery of a novel radiopaque embolization bead for image-guided therapy[J]. Biomaterials, 2016, 103: 293-304.
|
[18] |
Levy EB, Krishnasamy VP, Lewis AL, et al. First human experience with directly image-able iodinated embolization microbeads[J]. Cardiovasc Intervent Radiol, 2016, 39(8): 1177-1186.
|
[19] |
Chung EY, Kim HM, Lee GH, et al. Design of deformable chitosan microspheres loaded with superparamagnetic iron oxide nanoparticles for embolotherapy detectable by magnetic resonance imaging[J]. Carbohydr Polym, 2012, 90(4): 1725-1731.
|
[20] |
Li ZY, Qin XY, Guo LY, et al. Poly(acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization and MRI detectability: in vitro and in vivo evaluation[J]. Int J Pharm, 2017, 527(1-2): 31-41.
|
[21] |
Wang Q, Qian K, Liu S, et al. X-ray visible and uniform alginate microspheres loaded with in situ synthesized BaSO4 nanoparticles for in vivo transcatheter arterial embolization[J]. Biomacromolecules, 2015, 16(4): 1240-1246.
|
[22] |
Zeng J, Li L, Zhang H, et al. Radiopaque and uniform alginate microspheres loaded with tantalum nanoparticles for real-time imaging during transcatheter arterial embolization[J]. Theranostics, 2018, 8(17): 4591-4600.
|
[23] |
Iezzi R, Pompili M, Rinninella E, et al. TACE with degradable starch microspheres (DSM-TACE) as second-line treatment in HCC patients dismissing or ineligible for sorafenib[J]. Eur Radiol, 2019, 29(3): 1285-1292.
|
[24] |
Tang S, Zhou H, Wu Q, et al. Porous PLGA microspheres with recruited ions and doxorubicin for triple-combination therapy of larger hepatocellular carcinoma[J]. J Mater Chem B, 2017, 5(45): 9025-9032.
|
[25] |
Choi JW, Park JH, Cho HR, et al. Sorafenib and 2,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization ofa liver tumor[J]. Sci Rep, 2017, 7(1): 554.
|
[26] |
Wang Y, Benzina A, Molin DGM, et al. Preparation and structure of drug-carrying biodegradable microspheres designed for transarterial chemoembolization therapy[J]. J Biomater Sci Polym Ed, 2015, 26(2): 77-91.
|
[27] |
Wang Y, Molin DGM, Sevrin C, et al. In vitro and in vivo evaluation of drug-eluting microspheres designed for transarterial chemoembolization therapy[J]. Int J Pharm, 2016, 503(1-2): 150-162.
|
[28] |
Zhao H, Zheng C, Feng G, et al. Temperature-sensitive poly(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as an embolic agent: distribution, durability of vascular occlusion, and inflammatory reactions in the renal artery of rabbits[J]. AJNR Am J Neuroradiol, 2013, 34(1): 169-176.
|
[29] |
Qian K, Ma Y, Wan J, et al. The studies about doxorubicin-loaded p(N-isopropyl-acrylamide-co-butyl methylacrylate) temperature-sensitive nanogel dispersions on the application in TACE therapies for rabbit VX2 liver tumor[J]. J Control Release, 2015, 212: 41-49.
|
[30] |
Huang L, Shen M, Li R, et al. Thermo-sensitive composite hydrogels based on poloxamer 407 and alginate and their therapeutic effect in embolization in rabbit VX2 liver tumors[J]. Oncotarget, 2016, 7(45): 73280-73291.
|
[31] |
Poursaid A, Jensen MM, Nourbakhsh I, et al. Silk-elastinlike protein polymer liquid chemoembolic for localized release of doxorubicin and sorafenib[J]. Mol Pharm, 2016, 13(8): 2736-2748.
|
[32] |
Lym JS, Nguyen QV, Ahn DW, et al. Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy[J]. Acta Biomater, 2016, 41: 253-263.
|
[33] |
Nguyen QV, Lym JS, Huynh CT, et al. A novel sulfamethazine-based pH-sensitive copolymer for injectable radiopaque embolic hydrogels with potential application in hepatocellular carcinoma therapy[J]. Polym Chem, 2016, 7(37): 5805-5818.
|
[34] |
Huynh CT, Nguyen QV, Lym JS, et al. Intraarterial gelation of injectable cationic pH/temperature-sensitive radiopaque embolic hydrogels in a rabbit hepatic tumor model and their potential application for liver cancer treatment[J]. RSC Adv, 2016, 6(53): 47687-47697.
|
[35] |
Hu J, Albadawi H, Chong BW, et al. Advances in biomaterials and technologies for vascular embolization[J]. Adv Mater, 2019, 31(33): e1901071.
|