[1] |
Nensa F, Demircioglu A, Rischpler C. Artificial Intelligence in nuclear medicine[J]. J Nucl Med. 2019, 60(Suppl 2): 29S-37S.
|
[2] |
Iezzi R, Goldberg SN, Merlino B, et al. Artificial intelligence in interventional radiology: a literature review and future perspectives[J]. J Oncol. 2019, 2019: 6153041.
|
[3] |
Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging[J]. Radiographics, 2017, 37(2): 505-515.
|
[4] |
Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930.
|
[5] |
Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine[J]. J Intern Med, 2018, 284(6): 603-619.
|
[6] |
Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods[J]. AJR Am J Roentgenol, 2019, 212(1): 38-43.
|
[7] |
Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists[J]. Radiographics, 2017, 37(7): 2113-2131.
|
[8] |
Seah J, Boeken T, Sapoval M, et al. Prime time for artificial intelligence in interventional radiology[J]. Cardiovasc Intervent Radiol, 2022, 45(3): 283-289.
|
[9] |
von Ende E, Ryan S, Crain MA, et al. Artificial intelligence, augmented reality, and virtual reality advances and applications in interventional radiology[J]. Diagnostics (Basel), 2023, 13(5): 892.
|
[10] |
D'Amore B, Smolinski-Zhao S, Daye D, et al. Role of machine learning and artificial intelligence in interventional oncology[J]. Curr Oncol Rep. 2021, 23(6): 70.
|
[11] |
Boeken T, Feydy J, Lecler A, et al. Artificial intelligence in diagnostic and interventional radiology: where are we now?[J]. Diagn Interv Imaging. 2023, 104(1): 1-5.
|
[12] |
van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-"how-to" guide and critical reflection[J]. Insights Imaging. 2020, 11(1): 91.
|
[13] |
Scapicchio C, Gabelloni M, Barucci A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311.
|
[14] |
Agrawal T, Choudhary P. Segmentation and classification on chest radiography: a systematic survey[J]. Vis Comput, 2023, 39(3): 875-913.
|
[15] |
Yanagawa M, Ito R, Nozaki T, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging[J]. Radiol Med, 2023, 128(10): 1236-1249.
|
[16] |
Soerensen SJC, Fan RE, Seetharaman A, et al. Deep learning improves speed and accuracy of prostate gland segmentations on magnetic resonance imaging for targeted biopsy[J]. J Urol, 2021, 206(3): 604-612.
|
[17] |
Gurgitano M, Angileri SA, Rodà GM, et al. Interventional radiology ex-machina: impact of artificial Intelligence on practice[J]. Radiol Med, 2021, 126(7): 998-1006.
|
[18] |
Warren BE, Bilbily A, Gichoya JW, et al. An introductory guide to artificial intelligence in interventional radiology: part 1 foundational knowledge[J]. Can Assoc Radiol J, 2024, 75(3): 558-567.
|
[19] |
Stamate E, Piraianu AI, Ciobotaru OR, et al. Revolutionizing cardiology through artificial intelligence—big data from proactive prevention to precise diagnostics and cutting-edge treatmen—A comprehensive review of the past 5 years[J]. Diagnostics (Basel), 2024, 14(11): 1103.
|
[20] |
Weiss J, Raghu VK, Bontempi D, et al. Deep learning to estimate lung disease mortality from chest radiographs[J]. Nat Commun, 2023, 14(1): 2797.
|
[21] |
Schaffter T, Buist DSM, Lee CI, et al. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms[J]. JAMA Netw Open, 2020, 3(3): e200265.
|
[22] |
Zeleňák K, Krajina A, Meyer L, et al. How to improve the management of acute ischemic stroke by modern technologies, artificial intelligence, and new treatment methods[J]. Life (Basel), 2021, 11(6): 488.
|
[23] |
李娜, 贺建安, 陈阳, 等. 计算机辅助血管介入技术进展综述[J]. 计算机辅助设计与图形学学报, 2022, 34(7): 985-1010.
|
[24] |
付一凡, 翁桂湖, 曹喆, 等. 人工智能在胰腺癌诊疗中的应用[J]. 协和医学杂志, 2024, 15(4): 747-750.
|
[25] |
吴志远, 程永德. 数字介入—当介入放射学遇上数字医学[J]. 介入放射学杂志, 2024, 33(1): 1-6.
|
[26] |
Kim H, Goo JM, Lee KH, et al. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas[J]. Radiology, 2020, 296(1): 216-224.
|
[27] |
Nam D, Chapiro J, Paradis V, et al. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction[J]. JHEP Rep, 2022, 4(4): 100443.
|
[28] |
Tacher V, de Baere T. Robotic assistance in interventional radiology: dream or reality?[J]. Eur Radiol, 2020, 30(2): 925-926.
|
[29] |
Arapi V, Hardt-Stremayr A, Weiss S, et al. Bridging the simulation-to-real gap for AI-based needle and target detection in robot-assisted ultrasound-guided interventions[J]. Eur Radiol Exp, 2023, 7(1): 30.
|
[30] |
Lanza C, Carriero S, Buijs EFM, et al. Robotics in interventional radiology: review of current and future applications[J]. Technol Cancer Res Treat, 2023, 22: 15330338231152084.
|
[31] |
Najafi G, Kreiser K, Abdelaziz MEMK, et al. Current state of robotics in interventional radiology[J]. Cardiovasc Intervent Radiol, 2023, 46(5): 549-561.
|
[32] |
Desai SB, Pareek A, Lungren MP. Current and emerging artificial intelligence applications for pediatric interventional radiology[J]. Pediatr Radiol, 2022, 52(11): 2173-2177.
|
[33] |
Meek RD, Lungren MP, Gichoya JW. Machine Learning for the interventional radiologist[J]. AJR Am J Roentgenol, 2019, 213(4): 782-784.
|
[34] |
任贵, 郭文刚, 殷占新, 等. 血管介入模拟系统培训对介入进修生学习曲线的影响[J]. 介入放射学杂志, 2021, 30(8): 842-845.
|
[35] |
Neri E, Aghakhanyan G, Zerunian M, et al. Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology[J]. Radiol Med, 2023, 128(6): 755-764.
|
[36] |
Hsieh C, Laguna A, Ikeda I, et al. Using machine learning to predict response to image-guided therapies for hepatocellular carcinoma[J]. Radiology, 2023, 309(2): e222891.
|
[37] |
Brady AP, Neri E. Artificial intelligence in radiology-ethical considerations[J]. Diagnostics (Basel), 2020, 10(4): 231.
|
[38] |
Warren BE, Bilbily A, Gichoya JW, et al. An introductory guide to artificial intelligence in interventional radiology: part 2: implementation considerations and harms[J]. Can Assoc Radiol J, 2024, 75(3): 568-574.
|
[39] |
Daye D, Wiggins WF, Lungren MP, et al. Implementation of clinical artificial intelligence in radiology: who decides and how?[J]. Radiology, 2022, 305(3): 555-563.
|
[40] |
Dratsch T, Chen X, Rezazade Mehrizi M, et al. Automation bias in mammography: the impact of artificial intelligence bi-rads suggestions on reader performance[J]. Radiology, 2023, 307(4): e222176.
|