| [1] |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
|
| [2] |
Chon Y E, Jeong S W, Jun D W. Hepatocellular carcinoma statistics in South Korea[J]. Clin Mol Hepatol, 2021, 27(3): 512-514.
|
| [3] |
中华人民共和国国家卫生健康委员会医政 司. 原发性肝癌诊疗指南(2024年版)[J]. 协和医学杂志, 2024, 15(03): 532-559.
|
| [4] |
刘金明, 吴嘉艺, 刘安然, 等. 基于深度学习方法的肝癌伴胆道癌栓患者的术前诊断(英文)[J]. 中国科学技术大学学报, 2022, 52(12): 50-60,72.
|
| [5] |
Singal A G, Mukherjee A, Elmunzer B J, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma[J]. Am J Gastroenterol, 2013, 108(11): 1723-1730.
|
| [6] |
Currie G, Hawk K E, Rohren E, et al. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging[J]. J Med Imaging Radiat Sci, 2019, 50(4): 477-487.
|
| [7] |
祁亮, 沈洁. 机器学习在肝癌诊疗领域的应用进展[J]. 癌症进展, 2019, 17(05): 519-25.
|
| [8] |
Heimbach J K, Kulik L M, Finn R S, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380.
|
| [9] |
Yu N C, Chaudhari V, Raman S S, et al. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2011, 9(2): 161-167.
|
| [10] |
Hwang Y N, Lee J H, Kim G Y, et al. Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network[J]. Biomed Mater Eng, 2015, 26 Suppl 1: S1599-611.
|
| [11] |
Yang Q, Wei J, Hao X, et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study[J]. EBioMedicine, 2020, 56: 102777.
|
| [12] |
Guo L H, Wang D, Qian Y Y, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images[J]. Clin Hemorheol Microcirc, 2018, 69(3): 343-354.
|
| [13] |
Oestmann P M, Wang C J, Savic L J, et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma(HCC)versus non-HCC on contrast-enhanced MRI of the liver[J]. Eur Radiol, 2021, 31(7): 4981-4990.
|
| [14] |
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1): 154.
|
| [15] |
Zhen S H, Cheng M, Tao Y B, et al. Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data[J]. Front Oncol, 2020, 10: 680.
|
| [16] |
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma.[J]. J Hepatol, 2018, 69(1): 182-236.
|
| [17] |
Calderaro J, Ziiol M, Paradis V, et al. Molecular and histological correlations in liver cancer[J]. J Hepatol, 2019, 71(3): 616-630.
|
| [18] |
Wang R, He Y, Yao C, et al. Classification and Segmentation of Hyperspectral Data of Hepatocellular Carcinoma Samples Using 1-D Convolutional Neural Network[J]. Cytometry A, 2020, 97(1): 31-38.
|
| [19] |
Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma[J]. Clin Transl Med, 2020, 10(2): e102.
|
| [20] |
Lal S, Das D, Alabhya K, et al. NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images[J]. Comput Biol Med, 2021, 128: 104075.
|
| [21] |
Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer[J]. NPJ Digit Med, 2020, 3: 23.
|
| [22] |
Yang J D, Heimbach J K. New advances in the diagnosis and management of hepatocellular carcinoma[J]. BMJ, 2020, 371: m3544.
|
| [23] |
Llovet J M, Kelley R K, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1):6.
|
| [24] |
Wen N, Cai Y, Li F, et al. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines: 2022 update[J]. Bioscience trends, 2022, 16(1): 20-30.
|
| [25] |
Takayama T, Makuuchi M, Hirohashi S, et al. Early hepatocellular carcinoma as an entity with a high rate of surgical cure[J]. Hepatology, 1998, 28(5): 1241-1246.
|
| [26] |
Jia X, Sun Z, Mi Q, et al. A Multimodality-Contribution-Aware TripNet for Histologic Grading of Hepatocellular Carcinoma[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(4): 2003-2016.
|
| [27] |
Zhou Q, Zhou Z, Chen C, et al. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images[J]. Comput Biol Med, 2019, 107: 47-57.
|
| [28] |
Xiong Y, Cao P, Lei X, et al. Accurate prediction of microvascular invasion occurrence and effective prognostic estimation for patients with hepatocellular carcinoma after radical surgical treatment[J]. World J Surg Oncol, 2022, 20(1): 328.
|
| [29] |
Chong H H, Yang L, Sheng R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838.
|
| [30] |
Chen Z H, Zhang X P, Feng J K, et al. Patterns, treatments, and prognosis of tumor recurrence after resection for hepatocellular carcinoma with microvascular invasion: a multicenter study from China[J]. HPB(Oxford), 2022, 24(7): 1063-1073.
|
| [31] |
Chen Z H, Zhang X P, Feng J K, et al. Actual long-term survival in hepatocellular carcinoma patients with microvascular invasion: a multicenter study from China[J]. Hepatol Int, 2021, 15(3): 642-650.
|
| [32] |
Han J, Li Z L, Xing H, et al. The impact of resection margin and microvascular invasion on long-term prognosis after curative resection of hepatocellular carcinoma: a multi-institutional study[J]. HPB(Oxford), 2019, 21(8): 962-971.
|
| [33] |
Wang F, Chen Q, Chen Y, et al. A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma[J]. Eur J Surg Oncol, 2023, 49(1): 156-164.
|
| [34] |
Yang Y, Zhou Y, Zhou C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077.
|
| [35] |
Zandavi S M, Kim C, Goodwin T, et al. AI-powered prediction of HCC recurrence after surgical resection: Personalised intervention opportunities using patient-specific risk factors[J]. Liver Int, 2024, 44(10): 2724-2737.
|
| [36] |
Chen M, Kong C, Qiao E, et al. Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI[J]. Insights Imaging, 2023, 14(1): 38.
|
| [37] |
Liu Z, Liu Y, Zhang W, et al. Deep learning for prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: a discovery and validation study[J]. Hepatol Int, 2022, 16(3): 577-589.
|
| [38] |
Mehta N, Guy J, Frenette C T, et al. Excellent Outcomes of Liver Transplantation Following Down-Staging of Hepatocellular Carcinoma to Within Milan Criteria: A Multicenter Study[J]. Clin Gastroenterol Hepatol, 2018, 16(6): 955-964.
|
| [39] |
He T, Fong J N, Moore L W, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894.
|
| [40] |
Yang C, Tan J, Chen Y, et al. Prediction of late recurrence after curative-intent resection using MRI-measured spleen volume in patients with hepatocellular carcinoma and cirrhosis[J]. Insights Imaging, 2024, 15(1): 31.
|
| [41] |
Abajian A, Murali N, Savic L J, et al. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning-An Artificial Intelligence Concept[J]. J Vasc Interv Radiol, 2018, 29(6): 850-857.
|
| [42] |
严律南, 杨家印. 人工智能肝癌临床决策支持系统的开发、验证和应用价值[J]. 中国普外基础与临床杂志, 2020, 27(09): 1052-1056.
|
| [43] |
Hiraoka A, Kumada T, Tada T, et al. Attempt to Establish Prognostic Predictive System for Hepatocellular Carcinoma Using Artificial Intelligence for Assistance with Selection of Treatment Modality[J]. Liver cancer, 2023, 12(6): 565-575.
|