切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2025, Vol. 13 ›› Issue (04) : 373 -377. doi: 10.3877/cma.j.issn.2095-5782.2025.04.016

所属专题: 文献

综述

人工智能在肝细胞癌诊断及治疗决策中的应用
夏强强, 李兴(), 王黎洲()   
  1. 550001 贵州贵阳,贵州医科大学附属医院介入科
  • 收稿日期:2024-12-28 出版日期:2025-11-25
  • 通信作者: 李兴, 王黎洲
  • 基金资助:
    贵州省科技基金(黔科合基础-ZK[2022]一般383); 贵州省科技基金(黔科合平台人才-CXTD[2021]006)

Artificial Intelligence in Hepatocellular Carcinoma Diagnosis and Treatment Decisions

Qiangqiang Xia, Xing Li(), Lizhou Wang()   

  1. Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
  • Received:2024-12-28 Published:2025-11-25
  • Corresponding author: Xing Li, Lizhou Wang
引用本文:

夏强强, 李兴, 王黎洲. 人工智能在肝细胞癌诊断及治疗决策中的应用[J/OL]. 中华介入放射学电子杂志, 2025, 13(04): 373-377.

Qiangqiang Xia, Xing Li, Lizhou Wang. Artificial Intelligence in Hepatocellular Carcinoma Diagnosis and Treatment Decisions[J/OL]. Chinese Journal of Interventional Radiology(Electronic Edition), 2025, 13(04): 373-377.

肝细胞癌在全球癌症致死率中排名第三,患者的五年生存率低于20%,其诊断和治疗已成为全球医疗界的关注重点。近年来,人工智能技术在医学领域迅速发展,尤其是其子领域机器学习和深度学习,已被广泛应用于开发结合医学图像和临床数据的智能模型。人工智能技术能够提取并分析影像和病理图像中的数字特征,从而辅助医师进行快速、无创的肝细胞癌诊断,并能在治疗前结合临床数据对患者进行无创病理评估和预后预测。这些技术为医师提供了治疗决策的支持,有助于优化治疗方案,进而可能改善患者的预后。

Hepatocellular carcinoma (HCC) ranks third in global cancer mortality, with a 5-year survival rate below 20%, making its diagnosis and treatment a global medical priority. Artificial intelligence (AI), particularly machine learning and deep learning, has advanced rapidly in medical applications. AI models integrate medical imaging and clinical data to extract and analyze features from radiological and pathological images, enabling rapid, non-invasive HCC diagnosis. Additionally, AI supports non-invasive pathological assessments and prognostic predictions using pre-treatment clinical data. These technologies aid treatment decisions and optimize therapies, potentially improving patient outcomes.

[1]
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263.
[2]
Chon Y E, Jeong S W, Jun D W. Hepatocellular carcinoma statistics in South Korea[J]. Clin Mol Hepatol, 2021, 27(3): 512-514.
[3]
中华人民共和国国家卫生健康委员会医政 司. 原发性肝癌诊疗指南(2024年版)[J]. 协和医学杂志, 2024, 15(03): 532-559.
[4]
刘金明, 吴嘉艺, 刘安然, 等. 基于深度学习方法的肝癌伴胆道癌栓患者的术前诊断(英文)[J]. 中国科学技术大学学报, 2022, 52(12): 50-60,72.
[5]
Singal A G, Mukherjee A, Elmunzer B J, et al. Machine learning algorithms outperform conventional regression models in predicting development of hepatocellular carcinoma[J]. Am J Gastroenterol, 2013, 108(11): 1723-1730.
[6]
Currie G, Hawk K E, Rohren E, et al. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging[J]. J Med Imaging Radiat Sci, 2019, 50(4): 477-487.
[7]
祁亮, 沈洁. 机器学习在肝癌诊疗领域的应用进展[J]. 癌症进展, 2019, 17(05): 519-25.
[8]
Heimbach J K, Kulik L M, Finn R S, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380.
[9]
Yu N C, Chaudhari V, Raman S S, et al. CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2011, 9(2): 161-167.
[10]
Hwang Y N, Lee J H, Kim G Y, et al. Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network[J]. Biomed Mater Eng, 2015, 26 Suppl 1: S1599-611.
[11]
Yang Q, Wei J, Hao X, et al. Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study[J]. EBioMedicine, 2020, 56: 102777.
[12]
Guo L H, Wang D, Qian Y Y, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images[J]. Clin Hemorheol Microcirc, 2018, 69(3): 343-354.
[13]
Oestmann P M, Wang C J, Savic L J, et al. Deep learning-assisted differentiation of pathologically proven atypical and typical hepatocellular carcinoma(HCC)versus non-HCC on contrast-enhanced MRI of the liver[J]. Eur Radiol, 2021, 31(7): 4981-4990.
[14]
Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data[J]. J Hematol Oncol, 2021, 14(1): 154.
[15]
Zhen S H, Cheng M, Tao Y B, et al. Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data[J]. Front Oncol, 2020, 10: 680.
[16]
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma.[J]. J Hepatol, 2018, 69(1): 182-236.
[17]
Calderaro J, Ziiol M, Paradis V, et al. Molecular and histological correlations in liver cancer[J]. J Hepatol, 2019, 71(3): 616-630.
[18]
Wang R, He Y, Yao C, et al. Classification and Segmentation of Hyperspectral Data of Hepatocellular Carcinoma Samples Using 1-D Convolutional Neural Network[J]. Cytometry A, 2020, 97(1): 31-38.
[19]
Liao H, Long Y, Han R, et al. Deep learning-based classification and mutation prediction from histopathological images of hepatocellular carcinoma[J]. Clin Transl Med, 2020, 10(2): e102.
[20]
Lal S, Das D, Alabhya K, et al. NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images[J]. Comput Biol Med, 2021, 128: 104075.
[21]
Kiani A, Uyumazturk B, Rajpurkar P, et al. Impact of a deep learning assistant on the histopathologic classification of liver cancer[J]. NPJ Digit Med, 2020, 3: 23.
[22]
Yang J D, Heimbach J K. New advances in the diagnosis and management of hepatocellular carcinoma[J]. BMJ, 2020, 371: m3544.
[23]
Llovet J M, Kelley R K, Villanueva A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1):6.
[24]
Wen N, Cai Y, Li F, et al. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines: 2022 update[J]. Bioscience trends, 2022, 16(1): 20-30.
[25]
Takayama T, Makuuchi M, Hirohashi S, et al. Early hepatocellular carcinoma as an entity with a high rate of surgical cure[J]. Hepatology, 1998, 28(5): 1241-1246.
[26]
Jia X, Sun Z, Mi Q, et al. A Multimodality-Contribution-Aware TripNet for Histologic Grading of Hepatocellular Carcinoma[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(4): 2003-2016.
[27]
Zhou Q, Zhou Z, Chen C, et al. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images[J]. Comput Biol Med, 2019, 107: 47-57.
[28]
Xiong Y, Cao P, Lei X, et al. Accurate prediction of microvascular invasion occurrence and effective prognostic estimation for patients with hepatocellular carcinoma after radical surgical treatment[J]. World J Surg Oncol, 2022, 20(1): 328.
[29]
Chong H H, Yang L, Sheng R F, et al. Multi-scale and multi-parametric radiomics of gadoxetate disodium-enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma≤5 cm[J]. Eur Radiol, 2021, 31(7): 4824-4838.
[30]
Chen Z H, Zhang X P, Feng J K, et al. Patterns, treatments, and prognosis of tumor recurrence after resection for hepatocellular carcinoma with microvascular invasion: a multicenter study from China[J]. HPB(Oxford), 2022, 24(7): 1063-1073.
[31]
Chen Z H, Zhang X P, Feng J K, et al. Actual long-term survival in hepatocellular carcinoma patients with microvascular invasion: a multicenter study from China[J]. Hepatol Int, 2021, 15(3): 642-650.
[32]
Han J, Li Z L, Xing H, et al. The impact of resection margin and microvascular invasion on long-term prognosis after curative resection of hepatocellular carcinoma: a multi-institutional study[J]. HPB(Oxford), 2019, 21(8): 962-971.
[33]
Wang F, Chen Q, Chen Y, et al. A novel multimodal deep learning model for preoperative prediction of microvascular invasion and outcome in hepatocellular carcinoma[J]. Eur J Surg Oncol, 2023, 49(1): 156-164.
[34]
Yang Y, Zhou Y, Zhou C, et al. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma[J]. Eur J Surg Oncol, 2022, 48(5): 1068-1077.
[35]
Zandavi S M, Kim C, Goodwin T, et al. AI-powered prediction of HCC recurrence after surgical resection: Personalised intervention opportunities using patient-specific risk factors[J]. Liver Int, 2024, 44(10): 2724-2737.
[36]
Chen M, Kong C, Qiao E, et al. Multi-algorithms analysis for pre-treatment prediction of response to transarterial chemoembolization in hepatocellular carcinoma on multiphase MRI[J]. Insights Imaging, 2023, 14(1): 38.
[37]
Liu Z, Liu Y, Zhang W, et al. Deep learning for prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: a discovery and validation study[J]. Hepatol Int, 2022, 16(3): 577-589.
[38]
Mehta N, Guy J, Frenette C T, et al. Excellent Outcomes of Liver Transplantation Following Down-Staging of Hepatocellular Carcinoma to Within Milan Criteria: A Multicenter Study[J]. Clin Gastroenterol Hepatol, 2018, 16(6): 955-964.
[39]
He T, Fong J N, Moore L W, et al. An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer[J]. Comput Med Imaging Graph, 2021, 89: 101894.
[40]
Yang C, Tan J, Chen Y, et al. Prediction of late recurrence after curative-intent resection using MRI-measured spleen volume in patients with hepatocellular carcinoma and cirrhosis[J]. Insights Imaging, 2024, 15(1): 31.
[41]
Abajian A, Murali N, Savic L J, et al. Predicting Treatment Response to Intra-arterial Therapies for Hepatocellular Carcinoma with the Use of Supervised Machine Learning-An Artificial Intelligence Concept[J]. J Vasc Interv Radiol, 2018, 29(6): 850-857.
[42]
严律南, 杨家印. 人工智能肝癌临床决策支持系统的开发、验证和应用价值[J]. 中国普外基础与临床杂志, 2020, 27(09): 1052-1056.
[43]
Hiraoka A, Kumada T, Tada T, et al. Attempt to Establish Prognostic Predictive System for Hepatocellular Carcinoma Using Artificial Intelligence for Assistance with Selection of Treatment Modality[J]. Liver cancer, 2023, 12(6): 565-575.
[1] 姚垚, 杨小红, 赵胜, 高艳多, 郭凯莉. 胆道闭锁产前及生后超声诊断分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 962-968.
[2] 杨明, 许彩娜, 张宁, 王晓娜, 贾坤, 宋伟, 李丽, 薛红元. 2023—2024年度河北省甲状腺癌超声诊断符合率现状分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 846-849.
[3] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[4] 张振奇, 齐艺涵, 王璐, 胡紫玥, 李婷婷, 卢漫. 大语言模型DeepSeek-R1在甲状腺超声报告质量控制中的初步应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 832-837.
[5] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[6] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[7] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[8] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[9] 杨秀玲, 王文辉, 杨婕, 卢强. 双表型肝细胞癌与经典型肝细胞癌超声造影特征及危险因素分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 761-767.
[10] 高思琦, 张博闻, 蒋天安. 多模态声像图特征预测IgG4相关性胰腺炎应用类固醇类药物后影像学缓解与急性发作[J/OL]. 中华医学超声杂志(电子版), 2025, 22(07): 592-599.
[11] 刘畅, 蒋洁, 胥雪冬, 崔立刚, 张睿超, 王淑敏, 陈文. 基于C-TIRADS词典的甲状腺结节超声结构化报告使用评价[J/OL]. 中华医学超声杂志(电子版), 2025, 22(07): 620-627.
[12] 胡博文, 胡亚兰, 梁辉. 前列腺癌早期筛查的常见方法及最新研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 800-808.
[13] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[14] 常芳媛, 乔春梅, 王欣, 王博冉, 赵梓孚, 李春歌, 王晓磊. 多模态超声及人工智能在细菌性和非细菌性关节炎中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(08): 606-611.
[15] 宁雯琪, 张永利. 脓毒症心肌病的研究进展:基础、临床与展望[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 461-466.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?