切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2025, Vol. 13 ›› Issue (03) : 257 -262. doi: 10.3877/cma.j.issn.2095-5782.2025.03.011

综述

人工智能在介入放射学中的应用
游鹤1, 王黎洲2,()   
  1. 1 550001 贵州 贵阳,贵州医科大学医学影像学院
    2 550001 贵州 贵阳,贵州医科大学附属医院介入科
  • 收稿日期:2024-07-26 出版日期:2025-08-25
  • 通信作者: 王黎洲
  • 基金资助:
    贵州省科技计划(黔科合平台人才-CXTD[2021]006,黔科合基础-ZK[2022]一般383)

Application of artificial intelligence in interventional radiology

He You1, Lizhou Wang2,()   

  1. 1 School of Medical Imaging, Guizhou Medical University, Guizhou Guiyang 550001, China
    2 Department of Intervention, Affiliated Hospital of Guizhou Medical University, Guizhou Guiyang 550001, China
  • Received:2024-07-26 Published:2025-08-25
  • Corresponding author: Lizhou Wang
引用本文:

游鹤, 王黎洲. 人工智能在介入放射学中的应用[J/OL]. 中华介入放射学电子杂志, 2025, 13(03): 257-262.

He You, Lizhou Wang. Application of artificial intelligence in interventional radiology[J/OL]. Chinese Journal of Interventional Radiology(Electronic Edition), 2025, 13(03): 257-262.

人工智能是以计算机算法为基础,通过模拟人类智能,对大量数据进行分析来验证算法的灵敏度与特异性并不断优化自身,以实现完成指定任务的目的。近几年,人工智能技术在医疗领域的应用日益广泛,其中以介入放射学领域尤为显著。人工智能可以通过图像识别和分析技术,帮助医师快速准确地诊断和治疗疾病。在介入治疗中,人工智能可以辅助医师进行血管造影、肿瘤消融、血管内治疗等操作,提高手术的精准度和安全性。同时,人工智能还可以利用大数据分析患者的影像数据,为医师提供个性化的治疗方案,同时结合机器人技术进行微创手术,减少手术风险和患者的恢复时间。然而,人工智能辅助介入治疗也面临一系列挑战,如隐私保护、数据安全等。

Artificial intelligence is based on computer algorithms and simulates human intelligence to analyze large amounts of data to verify the sensitivity and specificity of algorithms and continuously optimize itself to achieve the goal of completing designated tasks. In recent years, the application of artificial intelligence technology in the medical field has become increasingly widespread, especially in interventional radiology. Artificial intelligence can use image recognition and analysis technology to help doctors quickly and accurately diagnose and treat diseases. In interventional treatment, artificial intelligence can assist doctors in performing angiography, tumor ablation, and vascular interventions, improving the precision and safety of the operation. At the same time, artificial intelligence can also utilize big data analysis to analyze the imaging data of patients and provide personalized treatment plans for doctors, and combine robotic technology to perform minimally invasive surgery to reduce surgical risks and the recovery time of patients. However, artificial intelligence-assisted interventional treatment also faces a series of challenges, such as privacy protection and data security.

[1]
Nensa F, Demircioglu A, Rischpler C. Artificial Intelligence in nuclear medicine[J]. J Nucl Med. 2019, 60(Suppl 2): 29S-37S.
[2]
Iezzi R, Goldberg SN, Merlino B, et al. Artificial intelligence in interventional radiology: a literature review and future perspectives[J]. J Oncol. 2019, 2019: 6153041.
[3]
Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging[J]. Radiographics, 2017, 37(2): 505-515.
[4]
Deo RC. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930.
[5]
Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine[J]. J Intern Med, 2018, 284(6): 603-619.
[6]
Handelman GS, Kok HK, Chandra RV, et al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods[J]. AJR Am J Roentgenol, 2019, 212(1): 38-43.
[7]
Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists[J]. Radiographics, 2017, 37(7): 2113-2131.
[8]
Seah J, Boeken T, Sapoval M, et al. Prime time for artificial intelligence in interventional radiology[J]. Cardiovasc Intervent Radiol, 2022, 45(3): 283-289.
[9]
von Ende E, Ryan S, Crain MA, et al. Artificial intelligence, augmented reality, and virtual reality advances and applications in interventional radiology[J]. Diagnostics (Basel), 2023, 13(5): 892.
[10]
D'Amore B, Smolinski-Zhao S, Daye D, et al. Role of machine learning and artificial intelligence in interventional oncology[J]. Curr Oncol Rep. 2021, 23(6): 70.
[11]
Boeken T, Feydy J, Lecler A, et al. Artificial intelligence in diagnostic and interventional radiology: where are we now?[J]. Diagn Interv Imaging. 2023, 104(1): 1-5.
[12]
van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-"how-to" guide and critical reflection[J]. Insights Imaging. 2020, 11(1): 91.
[13]
Scapicchio C, Gabelloni M, Barucci A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311.
[14]
Agrawal T, Choudhary P. Segmentation and classification on chest radiography: a systematic survey[J]. Vis Comput, 2023, 39(3): 875-913.
[15]
Yanagawa M, Ito R, Nozaki T, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging[J]. Radiol Med, 2023, 128(10): 1236-1249.
[16]
Soerensen SJC, Fan RE, Seetharaman A, et al. Deep learning improves speed and accuracy of prostate gland segmentations on magnetic resonance imaging for targeted biopsy[J]. J Urol, 2021, 206(3): 604-612.
[17]
Gurgitano M, Angileri SA, Rodà GM, et al. Interventional radiology ex-machina: impact of artificial Intelligence on practice[J]. Radiol Med, 2021, 126(7): 998-1006.
[18]
Warren BE, Bilbily A, Gichoya JW, et al. An introductory guide to artificial intelligence in interventional radiology: part 1 foundational knowledge[J]. Can Assoc Radiol J, 2024, 75(3): 558-567.
[19]
Stamate E, Piraianu AI, Ciobotaru OR, et al. Revolutionizing cardiology through artificial intelligence—big data from proactive prevention to precise diagnostics and cutting-edge treatmen—A comprehensive review of the past 5 years[J]. Diagnostics (Basel), 2024, 14(11): 1103.
[20]
Weiss J, Raghu VK, Bontempi D, et al. Deep learning to estimate lung disease mortality from chest radiographs[J]. Nat Commun, 2023, 14(1): 2797.
[21]
Schaffter T, Buist DSM, Lee CI, et al. Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms[J]. JAMA Netw Open, 2020, 3(3): e200265.
[22]
Zeleňák K, Krajina A, Meyer L, et al. How to improve the management of acute ischemic stroke by modern technologies, artificial intelligence, and new treatment methods[J]. Life (Basel), 2021, 11(6): 488.
[23]
李娜, 贺建安, 陈阳, 等. 计算机辅助血管介入技术进展综述[J]. 计算机辅助设计与图形学学报, 2022, 34(7): 985-1010.
[24]
付一凡, 翁桂湖, 曹喆, 等. 人工智能在胰腺癌诊疗中的应用[J]. 协和医学杂志, 2024, 15(4): 747-750.
[25]
吴志远, 程永德. 数字介入—当介入放射学遇上数字医学[J]. 介入放射学杂志, 2024, 33(1): 1-6.
[26]
Kim H, Goo JM, Lee KH, et al. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas[J]. Radiology, 2020, 296(1): 216-224.
[27]
Nam D, Chapiro J, Paradis V, et al. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction[J]. JHEP Rep, 2022, 4(4): 100443.
[28]
Tacher V, de Baere T. Robotic assistance in interventional radiology: dream or reality?[J]. Eur Radiol, 2020, 30(2): 925-926.
[29]
Arapi V, Hardt-Stremayr A, Weiss S, et al. Bridging the simulation-to-real gap for AI-based needle and target detection in robot-assisted ultrasound-guided interventions[J]. Eur Radiol Exp, 2023, 7(1): 30.
[30]
Lanza C, Carriero S, Buijs EFM, et al. Robotics in interventional radiology: review of current and future applications[J]. Technol Cancer Res Treat, 2023, 22: 15330338231152084.
[31]
Najafi G, Kreiser K, Abdelaziz MEMK, et al. Current state of robotics in interventional radiology[J]. Cardiovasc Intervent Radiol, 2023, 46(5): 549-561.
[32]
Desai SB, Pareek A, Lungren MP. Current and emerging artificial intelligence applications for pediatric interventional radiology[J]. Pediatr Radiol, 2022, 52(11): 2173-2177.
[33]
Meek RD, Lungren MP, Gichoya JW. Machine Learning for the interventional radiologist[J]. AJR Am J Roentgenol, 2019, 213(4): 782-784.
[34]
任贵, 郭文刚, 殷占新, 等. 血管介入模拟系统培训对介入进修生学习曲线的影响[J]. 介入放射学杂志, 2021, 30(8): 842-845.
[35]
Neri E, Aghakhanyan G, Zerunian M, et al. Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology[J]. Radiol Med, 2023, 128(6): 755-764.
[36]
Hsieh C, Laguna A, Ikeda I, et al. Using machine learning to predict response to image-guided therapies for hepatocellular carcinoma[J]. Radiology, 2023, 309(2): e222891.
[37]
Brady AP, Neri E. Artificial intelligence in radiology-ethical considerations[J]. Diagnostics (Basel), 2020, 10(4): 231.
[38]
Warren BE, Bilbily A, Gichoya JW, et al. An introductory guide to artificial intelligence in interventional radiology: part 2: implementation considerations and harms[J]. Can Assoc Radiol J, 2024, 75(3): 568-574.
[39]
Daye D, Wiggins WF, Lungren MP, et al. Implementation of clinical artificial intelligence in radiology: who decides and how?[J]. Radiology, 2022, 305(3): 555-563.
[40]
Dratsch T, Chen X, Rezazade Mehrizi M, et al. Automation bias in mammography: the impact of artificial intelligence bi-rads suggestions on reader performance[J]. Radiology, 2023, 307(4): e222176.
[1] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[2] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[3] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[4] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[5] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[6] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[7] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[8] 张克诚, 王瑞, 易磊, 周增丁. 烧烫伤创面深度评估模型HFNet 的构建及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 192-198.
[9] 郑仁杰, 张尊庶, 黄陈. 病理组学在胃癌诊治中的应用与挑战[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 274-280.
[10] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[11] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[12] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[13] 李媛媛, 李荣山. 机器学习:肾脏疾病研究与诊疗的新前沿[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 181-187.
[14] 王柯云, 孙雅佳, 李甜, 张钰哲, 郑颖, 张伟光, 王倩, 董哲毅. 糖尿病肾脏疾病早期发生风险预测模型的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 218-225.
[15] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?