切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2025, Vol. 13 ›› Issue (01) : 93 -96. doi: 10.3877/cma.j.issn.2095-5782.2025.01.018

所属专题: 经典病例

病例报告

脑动脉瘤光学相干断层扫描表现二例
张笑闻1, 李菁1,(), 管生1,(), 范梦妍1, Mateus TN Mach1, 万佳鑫1, 林日金1, 刘爱华2, 王蕾1, 张志科3   
  1. 1. 450000 河南郑州,郑州大学第一附属医院神经介入科
    2. 100050 北京,首都医科大学附属北京天坛医院脑血管病科
    3. 518000 广东深圳,深圳市中科微光医疗器械技术有限公司
  • 收稿日期:2024-02-04 出版日期:2025-02-25
  • 通信作者: 李菁, 管生
  • 基金资助:
    河南省高等学校重点科研项目(24A320026)

Optical coherence tomography findings in two cases of cerebral aneurysms

Xiaowen Zhang, Jing Li(), Sheng Guan(), Mengyan Fan, TN Mach Mateus, Jiaxin Wan, Rijin Lin, Aihua Liu, Lei Wang, Zhike Zhang   

  • Received:2024-02-04 Published:2025-02-25
  • Corresponding author: Jing Li, Sheng Guan
引用本文:

张笑闻, 李菁, 管生, 范梦妍, Mateus TN Mach, 万佳鑫, 林日金, 刘爱华, 王蕾, 张志科. 脑动脉瘤光学相干断层扫描表现二例[J/OL]. 中华介入放射学电子杂志, 2025, 13(01): 93-96.

Xiaowen Zhang, Jing Li, Sheng Guan, Mengyan Fan, TN Mach Mateus, Jiaxin Wan, Rijin Lin, Aihua Liu, Lei Wang, Zhike Zhang. Optical coherence tomography findings in two cases of cerebral aneurysms[J/OL]. Chinese Journal of Interventional Radiology(Electronic Edition), 2025, 13(01): 93-96.

图1 病例一治疗前数字减影血管造影及光学相干断层扫描图像 1A:术中DSA;1B:OCT 图像, A 中蓝色箭头;1C: OCT 图像,A 中对应的黄色箭头。1B、1C 中红色箭头所指为巨噬细胞聚集;1C 中蓝色箭头所指为收到伪影影响,黄色箭头所指为小滋养血管。DSA 为数字减影血管造影;OCT 为光学相干断层扫描。
表1 两例患者动脉瘤数据
图2 病例一的数字减影血管造影复查造影图
图3 病例二治疗前数字减影血管造影及光学相干断层扫描图像 3A:术中DSA;3B:OCT 图像,A 中蓝色箭头;3C:OCT 图像,A 中黄色箭头。3B、3C 中红色箭头所指为巨噬细胞聚集;蓝色箭头所指是收到伪影影响,无法评估。3B 中黄色箭头所指为血栓形成。DSA 为数字减影血管造影;OCT 为光学相干断层扫描。
图4 病例二的数字减影血管造影复查造影图
[1]
Song H, Yang Y, Sun Y, et al.Circular RNA cdyl promotes abdominal aortic aneurysm formation by inducing M1 macrophage polarization and M1-type inflammation[J].Mol Ther J Am Soc Gene Ther, 2022,30(2):915-931.
[2]
Cai D, Sun C, Murashita T, et al.ADAR1 non-editing function in macrophage activation and abdominal aortic aneurysm[J].Circ Res, 2023,132(4):e78-e93.
[3]
Jia Y, Zhang L, Liu Z, et al.Targeting macrophage TFEB-14-3-3 epsilon Interface by naringenin inhibits abdominal aortic aneurysm[J].Cell Discov, 2022,8(1):21.
[4]
Dale MA, Ruhlman MK, Baxter BT.Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy[J].Arterioscler Thromb Vasc Biol, 2015,35(8):1746-1755.
[5]
Shah PK.Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm[J].Circulation, 1997,96(7):2115-2117.
[6]
Raffort J, Lareyre F, Clément M, et al.Monocytes and macrophages in abdominal aortic aneurysm[J].Nat Rev Cardiol,2017,14(8):457-471.
[7]
Ali ZA, Karimi Galougahi K, Maehara A, et al.Intracoronary optical coherence tomography 2018: current status and future directions[J].JACC Cardiovasc Interv, 2017,10(24):2473-2487.
[8]
Yoshimura S, Kawasaki M, Yamada K, et al.OCT of human carotid arterial plaques[J].JACC Cardiovasc Imaging, 2011,4(4):432-436.
[9]
Jones MR, Attizzani GF, Given CA, et al.Intravascular frequency-domain optical coherence tomography assessment of atherosclerosis and stent-vessel interactions in human carotid arteries[J].AJNR Am J Neuroradiol, 2012,33(8):1494-1501.
[10]
Dohad S, Zhu A, Krishnan S, et al.Optical coherence tomography guided carotid artery stent procedure: technique and potential applications[J].Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv, 2018,91(3):521-530.
[11]
Nerla R, Castriota F, Micari A, et al.Carotid artery stenting with a new-generation double-mesh stent in three high-volume italian centres: clinical results of a multidisciplinary approach[J].Euro Intervention J Eur Collab Work Group Interv Cardiol Eur Soc Cardiol, 2016,12(5):e677-683.
[12]
Fries F, Maßmann A, Tomori T, et al.Accuracy of optical coherence tomography imaging in assessing aneurysmal remnants after flow diversion[J].J Neurointerventional Surg,2020,12(12):1242-1246.
[13]
Huang D, Swanson EA, Lin CP, et al.Optical coherence tomography[J].Science, 1991,254(5035):1178-1181.
[14]
Burgmaier M, Milzi A, Dettori R, et al.Colocalization of plaque macrophages and calcification in coronary plaques as detected by optical coherence tomography predicts cardiovascular outcome[J].Cardiol J, 2020,27(3):303-306.
[15]
Griessenauer CJ, Gupta R, Shi S, et al.Collar sign in incompletely occluded aneurysms after pipeline embolization: evaluation with angiography and optical coherence tomography[J].AJNR Am J Neuroradiol, 2017,38(2):323-326.
[16]
Xu X, Li M, Liu R, et al.Optical coherence tomography evaluation of vertebrobasilar artery stenosis: case series and literature review[J].J Neurointerventional Surg, 2020,12(8):809-813.
[17]
Xie JS, Donaldson L, Margolin E.The use of optical coherence tomography in neurology: a review[J].Brain J Neurol, 2022,145(12):4160-4177.
[18]
Yuan Z, Lu Y, Wei J, et al.Abdominal aortic aneurysm: roles of inflammatory cells[J].Front Immunol, 2020,11:609161.
[19]
Cheng Z, Zhou Y-Z, Wu Y, et al.Diverse roles of macrophage polarization in aortic aneurysm: destruction and repair[J].J Transl Med, 2018,16(1):354.
[20]
Dang G, Li T, Yang D, et al.T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2[J].Redox Biol, 2022,50:102257.
[21]
Frösen J, Cebral J, Robertson AM, et al.Flow-induced, inflammationmediated arterial wall remodeling in the formation and progression of intracranial aneurysms[J].Neurosurg Focus, 2019,47(1):E21.
[22]
Shimizu K, Miyata H, Abekura Y, et al.High-fat diet intake promotes the enlargement and degenerative changes in the media of intracranial aneurysms in rats[J].J Neuropathol Exp Neurol,2019,78(9):798-807.
[23]
Räber L, Koskinas KC, Yamaji K, et al.Changes in coronary plaque composition in patients with acute myocardial infarction treated with high-intensity statin therapy (IBIS-4): a serial optical coherence tomography study[J].JACC Cardiovasc Imaging,2019,12(8 Pt 1):1518-1528.
[24]
Filiberto AC, Spinosa MD, Elder CT, et al.Endothelial pannexin-1 channels modulate macrophage and smooth muscle cell activation in abdominal aortic aneurysm formation[J].Nat Commun,2022,13(1):1521.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[4] 鲁嘉懿, 唐菲, 卢芬, 陶于洪. 儿童系统性红斑狼疮相关性急性胰腺炎的临床诊疗及预后分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 635-643.
[5] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[6] 陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.
[7] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[8] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[9] 刘洪千, 马琦, 陈娟娟, 王成军, 武玲玲, 冯喜英. miR-150-5p 在青海地区结核分枝杆菌感染患者血清中的表达及意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 42-47.
[10] 马苗苗, 次苗苗, 寇振宇, 王斌锋, 和建武. 儿童急性下呼吸道感染血清hBD-2、MIP-1α、IL-13 与病情严重程度的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1008-1012.
[11] 向青, 龚道辉, 赵才林, 张硕辛, 秦蘅, 刘禹. 巨噬细胞参与免疫调节机制在肺动脉高压中的影响及相关纳米材料的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1027-1030.
[12] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[13] 刘思佳, 叶子, 李紫微, 杨青华, 李方敏, 李朝辉. 基于光学相干断层扫描及光学相干断层扫描血管成像观察白内障合并高血压患者超声乳化术后视网膜厚度及血流变化的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 269-275.
[14] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[15] 李晓东, 王汉宇, 马龙, 刘亮, 魏云, 李昂. 小脑后下动脉瘤的显微手术治疗[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 318-320.
阅读次数
全文


摘要