切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2023, Vol. 11 ›› Issue (02) : 159 -163. doi: 10.3877/cma.j.issn.2095-5782.2023.02.011

综述

计算流体力学研究B型主动脉夹层中4D Flow MRI的应用进展
王彦旭1, 何益港1, 秦永林1,()   
  1. 1. 210000 江苏南京,东南大学附属中大医院介入与血管外科
  • 收稿日期:2022-07-13 出版日期:2023-05-25
  • 通信作者: 秦永林
  • 基金资助:
    国家重点研发计划(2017YFC0109203)

The application progress of 4D flow MRI in computational fluid dynamics studies of Stanford B aortic dissection

Yanxu Wang1, Yigang He1, Yonglin Qin1,()   

  1. 1. School of Medicine; Centre of Interventional Radiology and Vascular Surgery, Zhongda Hospital, Southeast University, Jiangsu Nanjing 210000, China
  • Received:2022-07-13 Published:2023-05-25
  • Corresponding author: Yonglin Qin
引用本文:

王彦旭, 何益港, 秦永林. 计算流体力学研究B型主动脉夹层中4D Flow MRI的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(02): 159-163.

Yanxu Wang, Yigang He, Yonglin Qin. The application progress of 4D flow MRI in computational fluid dynamics studies of Stanford B aortic dissection[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2023, 11(02): 159-163.

主动脉夹层是危及生命的心血管急症之一,其复杂的血流动力学特征对疾病发生和发展具有重要意义。计算流体力学方法问世后,许多学者已将其用于分析人体血管血流动力学。现有基于计算流体力学(computational fluid dynamics,CFD)的B型主动脉夹层(type B aortic dissection,TBAD)血流动力学研究不足在于,计算结果的准确性和临床意义的解释有待提高。四维流动磁共振(4D Flow MRI)与CFD相结合为解决这些问题提供了新思路。文章就CFD研究TBAD中4D Flow MRI应用进展做一综述。

Aortic dissection is one of the life-threatening cardiovascular emergencies, and its complex hemodynamic features have important implications for disease initiation and progression. After the computational fluid dynamics (CFD) was came out, it has been widely used to analyze human vascular hemodynamics. The inadequacy of existing TBAD studies based on CFD lie in the fact that the accuracy of results and the interpretation of clinical significance need to be improved. The combination of 4D flow MRI and CFD to solve these problems provides new thoughts. We provide a review on the progress of 4D flow MRI in CFD studies on the hemodynamic applications of TBAD.

[1]
Marrocco MM, Sturla F. Blood flow helical pattern in typeⅢarch configuration as a potential risk factor for type B aortic dissection[J]. Eur J Cardio-Thorac Surg, 2022, 61(1):132-139.
[2]
Lombardi JV, Hughes GC, Appoo JJ, et al. Society for Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS) reporting standards for type B aortic dissections[J]. J Vasc Surg, 2020, 71(3):723-747.
[3]
Polanczyk A, Piechota PA, Domenig C, et al. Computational fluid dynamic accuracy in mimicking changes in blood hemodynamics in patients with acute typeⅢb aortic dissection treated with TEVAR[J]. Appl Sci Basel, 2018, 8(8):1309.
[4]
Polanczyk A, Piechota PA, Huk I, et al. Computational fluid dynamic technique for assessment of how changing character of blood flow and different value of hct influence blood hemodynamic in dissected aorta[J]. Diagnostics, 2021, 11(10):1866.
[5]
Dillon MD, Noorani A, Nordsletten D, et al. Multi-modality image-based computational analysis of haemodynamics in aortic dissection[J]. Biomech Model Mechanobiol, 2016, 15(4):857-876.
[6]
Ab Naim WNW, Ganesan PB, Sun Z, et al. Flow pattern analysis in type B aortic dissection patients after stent-grafting repair: comparison between complete and incomplete false lumen thrombosis[J]. Int J Numer Meth Biomed, 2018, 34(5):e2961.
[7]
Pirola S, Guo B, Menichini C, et al. 4D flow MRI-based computational analysis of blood flow in patient-specific aortic dissection[J]. IEEE Trans Biomed Eng, 2019, 66(12):3411-3419.
[8]
Clough RE, Waltham M, Giese D, et al. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging[J]. J Vasc Surg, 2012, 55(4):914-923.
[9]
Jarvis K, Pruijssen JT, Son AY, et al. Parametric hemodynamic 4D flow MRI maps for the characterization of chronic thoracic descending aortic dissection[J]. J Magn Reson Imaging, 2020, 51(5):1357-1368.
[10]
Sieren MM, Berlin C, Oechtering TH, et al. Comparison of 4D flow MRI to 2D flow MRI in the pulmonary arteries in healthy volunteers and patients with pulmonary hypertension[J]. PloS One, 2019, 14(10):1-17.
[11]
Archer GT, Elhawaz A, Barker N, et al. Validation of four-dimensional flow cardiovascular magnetic resonance for aortic stenosis assessment[J]. Sci Rep-uk, 2020, 10(1):1-10.
[12]
Negahdar MJ, Kadbi M, Kendrick M, et al. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis[J]. Magn Reson Med, 2016, 75(3):1090-1090.
[13]
Fukuyama A, Isoda H, Morita K, et al. Influence of spatial resolution in three-dimensional cine phase contrast magnetic resonance imaging on the accuracy of hemodynamic analysis[J]. Magn Reson Med Sci, 2017, 16(4):311-316.
[14]
Gallo D, De Santis G, Negri F, et al. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow[J]. Ann Biomed Eng, 2012, 40(3):729-741.
[15]
Armour CH, Guo B, Pirola S, et al. The influence of inlet velocity profile on predicted flow in type B aortic dissection[J]. Biomech Model Mechanobiol, 2021, 20(2):481-490.
[16]
Pirola S, Jarral OA, O'Regan DP, et al. Computational study of aortic hemodynamics for patients with an abnormal aortic valve: the importance of secondary flow at the ascending aorta inlet[J]. APL Bioeng, 2018, 2(2):026101.
[17]
Shang EK, Nathan DP, Fairman RM, et al. Use of computational fluid dynamics studies in predicting aneurysmal degeneration of acute type B aortic dissections[J]. J Vasc Surg, 2015, 62(2):279-284.
[18]
Bonfanti M, Franzetti G, Maritati G, et al. Patient-specific haemodynamic simulations of complex aortic dissections informed by commonly available clinical datasets[J]. Med Eng Phys, 2019, 71:45-55.
[19]
Xu H, Xiong J, Han X, et al. Computed tomography-based hemodynamic index for aortic dissection[J]. J Thorac Cardiovasc Surg, 2021, 162(2):E165-E176.
[20]
Karmonik C, Mueller EM, Partovi S, et al. Computational fluid dynamics investigation of chronic aortic dissection hemodynamics versus normal aorta[J]. Vasc Endovasc Surg, 2013, 47(8):625-631.
[21]
Abazari MA, Rafieianzab D, Soltani M, et al. The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection:a virtual study[J]. Sci Rep-UK, 2021, 11(1):16058.
[22]
Tomasi J, Le Bars F, Shao C, et al. Patient-specific and real-time model of numerical simulation of the hemodynamics of type B aortic dissections[J]. Med Hypotheses, 2020, 135:109477.
[23]
Qiu Y, Dong S, Liu Z, et al. Effect of geometric accuracy at the proximal landing zone on simulation results for thoracic endovascular repair patients[J]. Cardiovasc Eng Technol, 2020, 11(6):679-688.
[24]
Morbiducci U, Ponzini R, Gallo D, et al. Inflow boundary conditions for image-based computational hemodynamics:impact of idealized versus measured velocity profiles in the human aorta[J]. J Biomech, 2013, 46(1):102-109.
[25]
Menichini C, Cheng Z, Gibbs RGJ, et al. A computational model for false lumen thrombosis in type B aortic dissection following thoracic endovascular repair[J]. J Biomech, 2018, 66:36-43.
[26]
Costache VS, Meekel JP, Costache A, et al. One-year single-center results of the multilayer flow modulator stents for the treatment of type B aortic dissection[J]. J Endovascular Ther, 2021, 28(1):20-31.
[27]
Rinaudo A, D'Ancona G, Lee JJ, et al. Predicting outcome of aortic dissection with patent false lumen by computational flow analysis[J]. Cardiovasc Eng Technol, 2014, 5(2):176-188.
[28]
Ab Naim WNW, Ganesan PB, Sun Z, et al. Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection:a preliminary study using CFD approach[J]. Appl Math Model, 2016, 40(4):3115-3127.
[29]
Pirola S, Cheng Z, Jarral O A, et al. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics[J]. J Biomech, 2017, 60:15-21.
[30]
Parker LP, Reutersberg B, Syed MBJ, et al. Proximal false lumen thrombosis is associated with low false lumen pressure and fewer complications in type B aortic dissection[J]. J Vasc Surg, 2022, 75(4):1181-1190.
[31]
Xu H, Li Z, Dong H, et al. Hemodynamic parameters that may predict false-lumen growth in type-B aortic dissection after endovascular repair:a preliminary study on long-term multiple follow-ups[J]. Med Eng Phys, 2017, 50:12-21.
[32]
Cheng Z, Wood NB, Gibbs RGJ, et al. Geometric and flow features of type B aortic dissection:initial findings and comparison of medically treated and stented cases[J]. Ann Biomed Eng, 2015, 43(1):177-189.
[33]
Alimohammadi M, Pichardo AC, Agu O, et al. Development of a patient-specific multi-scale model to understand atherosclerosis and calcification locations:comparison with in vivo data in an aortic dissection[J]. Front Physiol, 2016, 7:238.
[34]
Yu SCH, Liu W, Wong RHL, et al. The potential of computational fluid dynamics simulation on serial monitoring of hemodynamic change in type B aortic dissection[J]. Cardiovasc Interv Radiol, 2016, 39(8):1090-1098.
[35]
Burris NS, Nordsletten DA, Sotelo JA, et al. False lumen ejection fraction predicts growth in type B aortic dissection:preliminary results[J]. Eur J Cardio-Thorac Surg, 2020, 57(5):896-903.
[36]
Marlevi D, Sotelo JA, Grogan KR, et al. False lumen pressure estimation in type B aortic dissection using 4D flow cardiovascular magnetic resonance:comparisons with aortic growth[J]. J Cardiov Magn Reson, 2021, 23(1):51.
[37]
Allen BD, Aouad PJ, Burris NS, et al. Detection and hemodynamic evaluation of flap fenestrations in type B aortic dissection with 4D flow MRI:comparison with conventional MRI and CT angiography[J]. Radiology: Cardiothoracic Imaging, 2019, 1(1):e180009.
[38]
谭仲伦, 郭晓婷, 陈忠, 等. 时间分辨动态增强磁共振血管成像技术在评估主动脉夹层原发破口的价值[J]. 生物医学工程与临床, 2020(3):288-292.
[39]
Lee YL, Huang YK, Hsu LS, et al. The use of non-contrast-enhanced MRI to evaluate serial changes in endoleaks after aortic stenting:a case report[J]. BMC Med Imaging, 2019, 19(1):82.
[40]
Katahashi K, Sano M, Takehara Y, et al. Flow dynamics of type Ⅱendoleaks can determine sac expansion after endovascular aneurysm repair using four-dimensional flow-sensitive magnetic resonance imaging analysis[J]. J Vasc Surg, 2019, 70(1):107-116.
[41]
Chen CW, Tseng YH, Lin CC, et al. Aortic dissection assessment by 4D phase-contrast MRI with hemodynamic parameters:the impact of stent type[J]. Quant Imaging Med Surg, 2021, 11(2):490-501.
[42]
Garreau M, Puiseux T, Toupin S, et al. Accelerated sequences of 4D flow MRI using GRAPPA and compressed sensing:a comparison against conventional MRI and computational fluid dynamics[J]. Magn Reson Med, 2022, 88(6):2432-2446.
[43]
Alimohammadi M. Aortic dissection:simulation tools for disease management and understanding[M]. Cham:Springer International Publishing, 2018:2-97.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 林乐清, 曹伟, 唐泽文, 王白永, 王磊, 张宁, 唐文学. 脓毒性休克患者液体复苏时外周灌注指数的临床指导价值研究[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 460-465.
[3] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[4] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[5] 张宏江, 刘雪莲, 郑立. 阿芬太尼联合丙泊酚麻醉在小儿腹腔镜疝囊高位结扎术的效果观察[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 711-715.
[6] 李祥魁, 薛玉荣, 丁凯, 孔劲松. ESPB、SAPB、TPVB对胸腔镜微创术血流动力学、应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 245-247.
[7] 王英, 薛意恒, 刘国勤. 肠系膜下动脉-高位结扎后降乙结肠血流通路重建机制研究方法的探索历程[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 265-271.
[8] 李欣赛, 彭凯, 黄萱, 王正业, 褚雪倩, 陈思思, 蒋绪燕, 李素华. 不同分型急性主动脉夹层导致围术期AKI临床预测模型的构建与比较[J]. 中华重症医学电子杂志, 2023, 09(02): 149-161.
[9] 王姗姗, 徐小汝, 史振仙, 张德杰. 丹参多酚酸联合尤瑞克林治疗急性分水岭脑梗死的疗效及对认知功能、脑血流动力学和血清LPA、ox-LDL、MMP-9水平的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 142-149.
[10] 李田利, 张照龙, 孙成建, 刘国平, 谢宜兴, 赵晓龙, 邵黎明, 郑璇, 王长鑫, 徐锐. 基于血流动力学、血脂及外周血炎症标志物的眼段动脉瘤破裂风险相关研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 78-83.
[11] 陈晓琴, 李星江, 胡涛, 赵金义, 薛培源, 刘伟, 王崇, 胡明成. 椎基底动脉迂曲扩张症的计算流体力学分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 21-25.
[12] 中华医学会消化病学分会微创介入协作组. 胃静脉曲张血流动力学分型与临床处理专家共识[J]. 中华消化病与影像杂志(电子版), 2022, 12(06): 325-333.
[13] 许睿, 刘长红, 王蔚云, 高莹莹, 刘鸿. Roy适应模式用于Stanford B型主动脉夹层患者围术期的价值[J]. 中华临床医师杂志(电子版), 2022, 16(08): 738-743.
[14] 梁晓宁, 吕朝阳, 郭瑞君. 床旁超声在同期胰肾联合移植治疗I型糖尿病术后的检查思路与探讨[J]. 中华临床医师杂志(电子版), 2022, 16(06): 553-557.
[15] 丁江波, 汤志伟. 烟雾病患者脑血流动力学的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 432-438.
阅读次数
全文


摘要