[1] |
Marrocco MM, Sturla F. Blood flow helical pattern in typeⅢarch configuration as a potential risk factor for type B aortic dissection[J]. Eur J Cardio-Thorac Surg, 2022, 61(1):132-139.
|
[2] |
Lombardi JV, Hughes GC, Appoo JJ, et al. Society for Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS) reporting standards for type B aortic dissections[J]. J Vasc Surg, 2020, 71(3):723-747.
|
[3] |
Polanczyk A, Piechota PA, Domenig C, et al. Computational fluid dynamic accuracy in mimicking changes in blood hemodynamics in patients with acute typeⅢb aortic dissection treated with TEVAR[J]. Appl Sci Basel, 2018, 8(8):1309.
|
[4] |
Polanczyk A, Piechota PA, Huk I, et al. Computational fluid dynamic technique for assessment of how changing character of blood flow and different value of hct influence blood hemodynamic in dissected aorta[J]. Diagnostics, 2021, 11(10):1866.
|
[5] |
Dillon MD, Noorani A, Nordsletten D, et al. Multi-modality image-based computational analysis of haemodynamics in aortic dissection[J]. Biomech Model Mechanobiol, 2016, 15(4):857-876.
|
[6] |
Ab Naim WNW, Ganesan PB, Sun Z, et al. Flow pattern analysis in type B aortic dissection patients after stent-grafting repair: comparison between complete and incomplete false lumen thrombosis[J]. Int J Numer Meth Biomed, 2018, 34(5):e2961.
|
[7] |
Pirola S, Guo B, Menichini C, et al. 4D flow MRI-based computational analysis of blood flow in patient-specific aortic dissection[J]. IEEE Trans Biomed Eng, 2019, 66(12):3411-3419.
|
[8] |
Clough RE, Waltham M, Giese D, et al. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging[J]. J Vasc Surg, 2012, 55(4):914-923.
|
[9] |
Jarvis K, Pruijssen JT, Son AY, et al. Parametric hemodynamic 4D flow MRI maps for the characterization of chronic thoracic descending aortic dissection[J]. J Magn Reson Imaging, 2020, 51(5):1357-1368.
|
[10] |
Sieren MM, Berlin C, Oechtering TH, et al. Comparison of 4D flow MRI to 2D flow MRI in the pulmonary arteries in healthy volunteers and patients with pulmonary hypertension[J]. PloS One, 2019, 14(10):1-17.
|
[11] |
Archer GT, Elhawaz A, Barker N, et al. Validation of four-dimensional flow cardiovascular magnetic resonance for aortic stenosis assessment[J]. Sci Rep-uk, 2020, 10(1):1-10.
|
[12] |
Negahdar MJ, Kadbi M, Kendrick M, et al. 4D spiral imaging of flows in stenotic phantoms and subjects with aortic stenosis[J]. Magn Reson Med, 2016, 75(3):1090-1090.
|
[13] |
Fukuyama A, Isoda H, Morita K, et al. Influence of spatial resolution in three-dimensional cine phase contrast magnetic resonance imaging on the accuracy of hemodynamic analysis[J]. Magn Reson Med Sci, 2017, 16(4):311-316.
|
[14] |
Gallo D, De Santis G, Negri F, et al. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow[J]. Ann Biomed Eng, 2012, 40(3):729-741.
|
[15] |
Armour CH, Guo B, Pirola S, et al. The influence of inlet velocity profile on predicted flow in type B aortic dissection[J]. Biomech Model Mechanobiol, 2021, 20(2):481-490.
|
[16] |
Pirola S, Jarral OA, O'Regan DP, et al. Computational study of aortic hemodynamics for patients with an abnormal aortic valve: the importance of secondary flow at the ascending aorta inlet[J]. APL Bioeng, 2018, 2(2):026101.
|
[17] |
Shang EK, Nathan DP, Fairman RM, et al. Use of computational fluid dynamics studies in predicting aneurysmal degeneration of acute type B aortic dissections[J]. J Vasc Surg, 2015, 62(2):279-284.
|
[18] |
Bonfanti M, Franzetti G, Maritati G, et al. Patient-specific haemodynamic simulations of complex aortic dissections informed by commonly available clinical datasets[J]. Med Eng Phys, 2019, 71:45-55.
|
[19] |
Xu H, Xiong J, Han X, et al. Computed tomography-based hemodynamic index for aortic dissection[J]. J Thorac Cardiovasc Surg, 2021, 162(2):E165-E176.
|
[20] |
Karmonik C, Mueller EM, Partovi S, et al. Computational fluid dynamics investigation of chronic aortic dissection hemodynamics versus normal aorta[J]. Vasc Endovasc Surg, 2013, 47(8):625-631.
|
[21] |
Abazari MA, Rafieianzab D, Soltani M, et al. The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection:a virtual study[J]. Sci Rep-UK, 2021, 11(1):16058.
|
[22] |
Tomasi J, Le Bars F, Shao C, et al. Patient-specific and real-time model of numerical simulation of the hemodynamics of type B aortic dissections[J]. Med Hypotheses, 2020, 135:109477.
|
[23] |
Qiu Y, Dong S, Liu Z, et al. Effect of geometric accuracy at the proximal landing zone on simulation results for thoracic endovascular repair patients[J]. Cardiovasc Eng Technol, 2020, 11(6):679-688.
|
[24] |
Morbiducci U, Ponzini R, Gallo D, et al. Inflow boundary conditions for image-based computational hemodynamics:impact of idealized versus measured velocity profiles in the human aorta[J]. J Biomech, 2013, 46(1):102-109.
|
[25] |
Menichini C, Cheng Z, Gibbs RGJ, et al. A computational model for false lumen thrombosis in type B aortic dissection following thoracic endovascular repair[J]. J Biomech, 2018, 66:36-43.
|
[26] |
Costache VS, Meekel JP, Costache A, et al. One-year single-center results of the multilayer flow modulator stents for the treatment of type B aortic dissection[J]. J Endovascular Ther, 2021, 28(1):20-31.
|
[27] |
Rinaudo A, D'Ancona G, Lee JJ, et al. Predicting outcome of aortic dissection with patent false lumen by computational flow analysis[J]. Cardiovasc Eng Technol, 2014, 5(2):176-188.
|
[28] |
Ab Naim WNW, Ganesan PB, Sun Z, et al. Prediction of thrombus formation using vortical structures presentation in Stanford type B aortic dissection:a preliminary study using CFD approach[J]. Appl Math Model, 2016, 40(4):3115-3127.
|
[29] |
Pirola S, Cheng Z, Jarral O A, et al. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics[J]. J Biomech, 2017, 60:15-21.
|
[30] |
Parker LP, Reutersberg B, Syed MBJ, et al. Proximal false lumen thrombosis is associated with low false lumen pressure and fewer complications in type B aortic dissection[J]. J Vasc Surg, 2022, 75(4):1181-1190.
|
[31] |
Xu H, Li Z, Dong H, et al. Hemodynamic parameters that may predict false-lumen growth in type-B aortic dissection after endovascular repair:a preliminary study on long-term multiple follow-ups[J]. Med Eng Phys, 2017, 50:12-21.
|
[32] |
Cheng Z, Wood NB, Gibbs RGJ, et al. Geometric and flow features of type B aortic dissection:initial findings and comparison of medically treated and stented cases[J]. Ann Biomed Eng, 2015, 43(1):177-189.
|
[33] |
Alimohammadi M, Pichardo AC, Agu O, et al. Development of a patient-specific multi-scale model to understand atherosclerosis and calcification locations:comparison with in vivo data in an aortic dissection[J]. Front Physiol, 2016, 7:238.
|
[34] |
Yu SCH, Liu W, Wong RHL, et al. The potential of computational fluid dynamics simulation on serial monitoring of hemodynamic change in type B aortic dissection[J]. Cardiovasc Interv Radiol, 2016, 39(8):1090-1098.
|
[35] |
Burris NS, Nordsletten DA, Sotelo JA, et al. False lumen ejection fraction predicts growth in type B aortic dissection:preliminary results[J]. Eur J Cardio-Thorac Surg, 2020, 57(5):896-903.
|
[36] |
Marlevi D, Sotelo JA, Grogan KR, et al. False lumen pressure estimation in type B aortic dissection using 4D flow cardiovascular magnetic resonance:comparisons with aortic growth[J]. J Cardiov Magn Reson, 2021, 23(1):51.
|
[37] |
Allen BD, Aouad PJ, Burris NS, et al. Detection and hemodynamic evaluation of flap fenestrations in type B aortic dissection with 4D flow MRI:comparison with conventional MRI and CT angiography[J]. Radiology: Cardiothoracic Imaging, 2019, 1(1):e180009.
|
[38] |
谭仲伦, 郭晓婷, 陈忠, 等. 时间分辨动态增强磁共振血管成像技术在评估主动脉夹层原发破口的价值[J]. 生物医学工程与临床, 2020(3):288-292.
|
[39] |
Lee YL, Huang YK, Hsu LS, et al. The use of non-contrast-enhanced MRI to evaluate serial changes in endoleaks after aortic stenting:a case report[J]. BMC Med Imaging, 2019, 19(1):82.
|
[40] |
Katahashi K, Sano M, Takehara Y, et al. Flow dynamics of type Ⅱendoleaks can determine sac expansion after endovascular aneurysm repair using four-dimensional flow-sensitive magnetic resonance imaging analysis[J]. J Vasc Surg, 2019, 70(1):107-116.
|
[41] |
Chen CW, Tseng YH, Lin CC, et al. Aortic dissection assessment by 4D phase-contrast MRI with hemodynamic parameters:the impact of stent type[J]. Quant Imaging Med Surg, 2021, 11(2):490-501.
|
[42] |
Garreau M, Puiseux T, Toupin S, et al. Accelerated sequences of 4D flow MRI using GRAPPA and compressed sensing:a comparison against conventional MRI and computational fluid dynamics[J]. Magn Reson Med, 2022, 88(6):2432-2446.
|
[43] |
Alimohammadi M. Aortic dissection:simulation tools for disease management and understanding[M]. Cham:Springer International Publishing, 2018:2-97.
|