[1] |
Ernemann U, Kramer U, Miller S, et al. Current concepts in the classification, diagnosis and treatment of vascular anomalies[J]. Eur J Radiol, 2010, 75(1): 2-11.
|
[2] |
Wassef M, Blei F, Adams D, et al. Vascular anomalies classification: recommendations from the International Society for the Study of Vascular Anomalies[J]. Pediatrics, 2015, 136(1): e203-e214.
|
[3] |
Greene AK. Vascular anomalies: current overview of the field[J]. Clin Plast Surg, 2011, 38(1): 1-5.
|
[4] |
Tyraskis A, Durkin N, Davenport M. Congenital vascular anomalies of the liver[J]. S Afr Med J, 2017, 107(10): 12130.
|
[5] |
Davenport M. Congenital vascular malformations of the lLiver: an association with trisomy 21[J]. J Pediatr Gastroenterol Nutr, 2017, 64(3): e82.
|
[6] |
Pang PP, Hu XJ, Zhou B, et al. DDX24 mutations associated with malformations of major vessels to the viscera[J]. Hepatology, 2019, 69(2): 803-816.
|
[7] |
Ma Z, Moore R, Xu XX, et al. DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling[J]. PLoS Pathog, 2013, 9(10): e1003721.
|
[8] |
Ma YW, Yu L, Pan S, et al. CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre-loxP-mediated lineage tracing[J]. Febs j, 2017, 284(19): 3262-3277.
|
[9] |
Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea[J]. Mol Cell, 2010, 37(1): 7-19.
|
[10] |
Liu TZ, Long Q, Li LL, et al. The NRF2-dependent transcriptional axis, XRCC5/hTERT drives tumor progression and 5-Fu insensitivity in hepatocellular carcinoma[J]. Mol Ther Oncolytics, 2022, 24: 249-261.
|
[11] |
Tual-Chalot S, Allinson KR, Fruttiger M, et al. Whole mount immunofluorescent staining of the neonatal mouse retina to investigate angiogenesis in vivo[J]. J Vis Exp, 2013, (77): e50546.
|
[12] |
Denier C, Labauge P, Bergametti F, et al. Genotype-phenotype correlations in cerebral cavernous malformations patients[J]. Ann Neurol, 2006, 60(5): 550-556.
|
[13] |
Wouters V, Limaye N, Uebelhoer M, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects[J]. Eur J Hum Genet, 2010, 18(4): 414-420.
|
[14] |
Gordon K, Schulte D, Brice G, et al. Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema[J]. Circ Res, 2013, 112(6): 956-960.
|
[15] |
Brouillard P, Boon LM, Mulliken JB, et al. Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas")[J]. Am J Hum Genet, 2002, 70(4): 866-874.
|
[16] |
Boon LM, Mulliken JB, Vikkula M. RASA1: variable phenotype with capillary and arteriovenous malformations[J]. Curr Opin Genet Dev, 2005, 15(3): 265-269.
|
[17] |
Linder P, Jankowsky E. From unwinding to clamping - the DEAD box RNA helicase family[J]. Nat Rev Mol Cell Biol, 2011, 12(8): 505-516.
|
[18] |
Linder P, Fuller-Pace FV. Looking back on the birth of DEAD-box RNA helicases[J]. Biochim Biophys Acta, 2013, 1829(8): 750-755.
|
[19] |
Frutkin AD, Shi H, Otsuka G, et al. A critical developmental role for tgfbr2 in myogenic cell lineages is revealed in mice expressing SM22-Cre, not SMMHC-Cre[J]. J Mol Cell Cardiol, 2006, 41(4): 724-731.
|
[20] |
Wang Y, Cao Y, Yamada S, et al. Cardiomyopathy and worsened ischemic heart failure in SM22-α cre-mediated neuropilin-1 null mice: dysregulation of PGC1α and mitochondrial homeostasis[J]. Arterioscler Thromb Vasc Biol, 2015, 35(6): 1401-1412.
|
[21] |
Hong J, Liu RL, Chen LW, et al. Conditional knockout of tissue factor pathway inhibitor 2 in vascular endothelial cells accelerates atherosclerotic plaque development in mice[J]. Thromb Res, 2016, 137: 148-156.
|