切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2022, Vol. 10 ›› Issue (04) : 422 -428. doi: 10.3877/cma.j.issn.2095-5782.2022.04.015

影像诊断

弥散张量成像对于康复期COVID-19患者神经损害的初步研究
牛姗姗1, 韩佳悦1, 吴文浩1, 廖健伟1, 罗联美1, 张亚琴1,()   
  1. 1. 519000 广东珠海,中山大学附属第五医院放射科
  • 收稿日期:2022-11-01 出版日期:2022-11-25
  • 通信作者: 张亚琴
  • 基金资助:
    广东省自然科学基金(2020A1515010572); 珠海市基础与应用基础课题研究项目(ZH22017003200001PWC)

A preliminary study of Diffusion tensor imaging for neurological damage in recovered patients with coronavirus disease-2019

Shanshan Niu1, Jiayue Han1, Wenhao Wu1, Jianwei Liao1, Lianmei Luo1, Yaqin Zhang1,()   

  1. 1. Department of Radiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong Zhuhai 519000, China
  • Received:2022-11-01 Published:2022-11-25
  • Corresponding author: Yaqin Zhang
引用本文:

牛姗姗, 韩佳悦, 吴文浩, 廖健伟, 罗联美, 张亚琴. 弥散张量成像对于康复期COVID-19患者神经损害的初步研究[J]. 中华介入放射学电子杂志, 2022, 10(04): 422-428.

Shanshan Niu, Jiayue Han, Wenhao Wu, Jianwei Liao, Lianmei Luo, Yaqin Zhang. A preliminary study of Diffusion tensor imaging for neurological damage in recovered patients with coronavirus disease-2019[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2022, 10(04): 422-428.

目的

应用弥散张量成像(diffusion tensor imaging,DTI)评估康复期COVID-19患者可能存在的白质纤维结构的改变,探讨SARS-CoV2对中枢神经系统可能造成的潜在迟发性损害。

方法

回顾性分析27例康复期COVID-19患者(普通患者组17例,重症患者组10例)和39例健康对照组的临床及颅脑MRI影像学资料。

结果

重症患者组的炎症反应及凝血功能异常较普通患者组明显;DTI结果:重症患者组多个神经纤维束的平均扩散率(mean diffusivity,MD)增加(P < 0.05,FDR校正),主要分布在小脑中脚、胼胝体体部、双侧前、上放射冠区、双侧内囊前肢、左侧皮质脊髓束、左侧外囊、左侧上额枕束、毯及右侧下额枕束、右侧勾束等;小脑中脚各向异性分数(fractional anisotropy,FA)值下降(P < 0.05,FDR校正)。

结论

康复期COVID-19患者存在白质纤维结构的改变,SARS-CoV2可能对中枢神经系统造成持续性或迟发性损害。DTI可提供有效的神经系统病毒感染的证据,有助于疾病的早期诊断。

Objective

We used diffusion tensor imaging (DTI) to assess the potential possible changes in the microstructure of the white matter fiber bundles of recovered patients with coronavirus disease-2019 (COVID-19) and to explore the potential delayed damages to the central nervous system (CNS) caused by SARS-CoV2.

Methods

A total of 27 recovered COVID-19 patients (severe group 10, ordinary group 17) and 39 healthy controls (HC) were retrospectively analyzed. General clinical and brain imaging data were collected from all individuals.

Results

The inflammatory response (WBC, CRP, lymphocyte) and coagulation dysfunction (PLT, D-dimer) were more obvious in the severe group than in the ordinary group. Based on the DTI results, we found that patients in the severe group showed a wide-range of microstructural damage compared to the HC and ordinary group, represented mainly by the increase in mean diffusivity (MD) values in multiple nerve bundles (P < 0.05, FDR correction), mainly in the middle cerebellar peduncle, bilateral anterior and superior corona radiata, bilateral anterior limb of internal capsule, body of corpus callosum, left corticospinal tract, left external capsule, left superior fronto-occipital fasciculus, right inferior fronto-occipital fasciculus, and right uncinate fasciculus; and a decrease in fractional anisotropy (FA) values in the middle cerebellar peduncle(P < 0.05, FDR correction).

Conclusions

The microstructural integrity of the white matter fibers was disrupted in recovered patients with COVID-19, which further showed sustained or delayed damages of the SARS-CoV2 to the CNS. DTI may provide effective evidence of viral infection in the nervous system and contribute to the early diagnosis of the disease.

表1 研究样本的人口统计学特征[±sn(%)]
表2 研究样本的临床和实验室特征[n(%)]
图1 重症患者、普通患者与健康对照组间不同脑区的MD值、FA值1A~1N:三组间MD值差异有统计学意义的脑区,采用单因素方差分析检验(P < 0.05,FDR校正);1O:三组间FA值差异有统计学意义的脑区,采用单因素方差分析检验(P < 0.05,FDR校正)。
表3 重症患者组、普通患者、健康对照组MD值、FA值的组间差异(P < 0.05,FDR校正)
DTI参数 脑区 重症患者组(n = 10) 普通患者组(n = 17) 健康对照组(n = 39) F P
MD 小脑中脚 0.000 840 ± 0.000 055 0.000 806 ± 0.000 036 0.000 793 ± 0.000 022 8.504 0.001ab
  胼胝体体部 0.000 938 ± 0.000 051 0.000 890 ± 0.000 042 0.000 885 ± 0.000 030 8.365 0.001ab
  皮质脊髓束. L 0.000 784 ± 0.000 052 0.000 763 ± 0.000 032 0.000 739 ± 0.000 028 8.531 0.001bc
  内囊前肢. R 0.000 720 ± 0.000 030 0.000 700 ± 0.000 093 0.000 705 ± 0.000 015 4.575 0.014ab
  内囊前肢. L 0.000 703 ± 0.000 026 0.000 685 ± 0.000 010 0.000 689 ± 0.000 013 4.796 0.012ab
  前放射冠. R 0.000 785 ± 0.000 042 0.000 747 ± 0.000 028 0.000 752 ± 0.000 023 6.463 0.003ab
  前放射冠. L 0.000 759 ± 0.000 041 0.000 726 ± 0.000 025 0.000 730 ± 0.000 026 4.964 0.010ab
  上放射冠. R 0.000 712 ± 0.000 031 0.000 691 ± 0.000 015 0.000 690 ± 0.000 017 5.509 0.006ab
  上放射冠. L 0.000 717 ± 0.000 023 0.000 698 ± 0.000 020 0.000 697 ± 0.000 017 5.111 0.009ab
  外囊. L 0.000 774 ± 0.000 034 0.000 751 ± 0.000 014 0.000 754 ± 0.000 015 5.262 0.008ab
  上额枕束. L 0.000 719 ± 0.000 063 0.000 685 ± 0.000 018 0.000 687 ± 0.000 021 4.865 0.011ab
  下额枕束. R 0.000 812 ± 0.000 054 0.000 779 ± 0.000 015 0.000 779 ± 0.000 020 6.710 0.002ab
  钩束. R 0.000 812 ± 0.000 046 0.000 788 ± 0.000 025 0.000 783 ± 0.000 030 4.599 0.014ab
  毯. L 0.001 673 ± 0.000 096 0.001 579 ± 0.000 134 0.001 537 ± 0.000 131 4.613 0.013b
FA 小脑中脚 0.429 696 ± 0.012 855 0.440 464 ± 0.010 475 0.440 617 ± 0.012 164 3.566 0.034ab
[1]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China[J]. JAMA Neurol, 2020, 77(6): 683-690.
[2]
Ladopoulos T, Zand R, Shahjouei S, et al. COVID-19: neuroimaging features of a pandemic[J]. J Neuroimaging, 2021, 31(2): 228-243.
[3]
Avula A, Nalleballe K, Narula N, et al. COVID-19 presenting as stroke[J]. Brain Behav Immun, 2020, 87: 115-119.
[4]
Dixon L, Varley J, Gontsarova A, et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia[J]. Neurol Neuroimmunol Neuroinflamm, 2020, 7(5): e789
[5]
Poyiadji N, Shahin G, Noujaim D, et al. COVID-19–associated acute hemorrhagic necrotizing encephalopathy: imaging features[J]. Radiology, 2020, 296(2): E119-E120.
[6]
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2[J]. Int J Infect Dis, 2020, 94: 55-58.
[7]
Mahapure KS, Prabhune AS, Chouvhan AV. COVID-19-associated acute disseminated encephalomyelitis: a systematic review[J]. Asian J Neurosurg, 2021, 16(3): 457-469.
[8]
Tae WS, Ham BJ, Pyun SB, et al. Current clinical applications of diffusion-tensor imaging in neurological disorders[J]. J Clin Neurol, 2018, 14(2): 129-140.
[9]
Wu X, Zhang J, Cui Z, et al. White matter deficits underlying the impaired consciousness level in patients with disorders of consciousness[J]. Neurosci Bull, 2018, 34(4): 668-678.
[10]
Corrêa DG, Zimmermann N, Doring TM, et al. Diffusion tensor MR imaging of white matter integrity in HIV-positive patients with planning deficit[J]. Neuroradiology, 2015, 57(5): 475-482.
[11]
Aung WY, Mar S, Benzinger TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage[J]. Imaging Med, 2013, 5(5): 427-440.
[12]
Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms[J]. ACS Chem Neurosci, 2020, 11(7): 995-998.
[13]
Desforges M, Le Coupanec A, Dubeau P, et al. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system?[J]. Viruses, 2019, 12(1): 14.
[14]
Zanin L, Saraceno G, Panciani PP, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions[J]. Acta Neurochir, 2020, 162(7): 1491-1494.
[15]
Ogier M, Andéol G, Sagui E, et al. How to detect and track chronic neurologic sequelae of COVID-19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up[J]. Brain Behav Immun Health, 2020, 5: 100081.
[16]
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)[J]. J Med Virol, 2020, 92(7): 699-702.
[17]
Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain[J]. Front Med, 2020, 14(5): 533-541.
[18]
Katal S, Balakrishnan S, Gholamrezanezhad A. Neuroimaging and neurologic findings in COVID-19 and other coronavirus infections: A systematic review in 116 patients[J]. J Neuroradiol, 2021, 48(1): 43-50.
[19]
Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2[J].J Virol, 2008, 82(15): 7264-7275.
[20]
Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of middle east pespiratory syndrome[J]. J Clin Neurol, 2017, 13(3): 227-233.
[21]
Bohmwald K, Gálvez NMS, Ríos M, et al. Neurologic alterations due to respiratory virus infections[J]. Front Cell Neurosci, 2018, 12: 386.
[22]
Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré syndrome associated with SARS-CoV-2[J]. N Engl J Med, 2020, 382(26): 2574-2576.
[23]
Zoghi A, Ramezani M, Roozbeh M, et al. A case of possible atypical demyelinating event of the central nervous system following COVID-19[J]. Mult Scler Relat Disord, 2020, 44: 102324.
[24]
Arabi YM, Harthi A, Hussein J, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV)[J]. Infection, 2015, 43(4): 495-501.
[25]
Zhu T, Zhong J, Hu R, et al. Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study[J]. J Neurovirol, 2013, 19(1): 10-23.
[26]
Bladowska J, Pawłowski T, Fleischer-Stępniewska K, et al. Interferon-free therapy as the cause of white matter tracts and cerebral perfusion recovery in patients with chronic hepatitis C[J]. J Viral Hepat, 2019, 26(6): 635-643.
[27]
Lu Y, Li X, Geng D, et al. Cerebral micro-structural changes in COVID-19 patients-an MRI-based 3-month follow-up study[J]. EClinicalMedicine, 2020, 25: 100484.
[28]
Ho ML, Rojas R, Eisenberg RL. Cerebral edema[J]. AJR Am J Roentgenol, 2012, 199(3): W258-273.
[29]
Schmahmann JD, Smith EE, Eichler FS, et al. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates[J]. Ann N Y Acad Sci, 2008, 1142: 266-309.
[30]
Wojcik GM, Masiak J, Kawiak A, et al. Mapping the human brain in frequency band analysis of brain cortex electroencephalographic activity for selected psychiatric disorders[J]. Front Neuroinform, 2018, 12: 73.
[31]
Re TJ, Levman J, Lim AR, et al. High-angular resolution diffusion imaging tractography of cerebellar pathways from newborns to young adults[J]. Brain Behav, 2017, 7(1): e00589.
[32]
Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study[J]. Eur Arch Otorhinolaryngol, 2020, 277(8): 2251-2261.
[1] 丁妍, 文华轩, 陈芷萱, 曾晴, 张梦雨, 廖伊梅, 罗丹丹, 秦越, 梁美玲, 邹于, 李胜利. 胎儿小脑皮质发育不良的产前超声诊断[J]. 中华医学超声杂志(电子版), 2023, 20(03): 255-264.
[2] 丁妍, 文华轩, 张梦雨, 陈思齐, 温昕, 彭桂艳, 曾晴, 罗丹丹, 廖伊梅, 秦越, 梁美玲, 李胜利. 胎儿小脑表面叶裂的产前超声研究[J]. 中华医学超声杂志(电子版), 2023, 20(01): 14-22.
[3] 李玉静, 陈七一, 谢汝明, 陈步东. 获得性免疫缺陷综合征相关原发性中枢神经系统淋巴瘤的预后研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 200-208.
[4] 李倩, 邓莉平, 陈果, 张忠威, 莫平征, 胡文佳, 陈良君, 张捷, 张永喜, 杨蓉蓉, 熊勇. 宏基因组二代测序在获得性免疫缺陷综合征合并中枢神经系统感染中的临床应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(01): 24-31.
[5] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[6] 钱永兵, 杭化莲, 张灏旻, 邓羽霄, 陈小松, 夏强. 慢加急性肝衰竭肝移植术后早期并发播散性曲霉病一例[J]. 中华移植杂志(电子版), 2022, 16(05): 306-308.
[7] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[8] 程庆砾. 新冠病毒感染与肾脏[J]. 中华肾病研究电子杂志, 2023, 12(04): 240-240.
[9] 蔡霖, 龚秋源, 王伟, 田恒力. 单细胞测序分析技术在小胶质细胞表型异质性研究中的最新进展[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 156-160.
[10] 陈露, 徐蓉, 吴嘉铭, 罗一宁, 廖建成, 李孟辉, 陈克恩, 张茂营. 颅内磷酸盐尿性间叶性肿瘤致骨软化症一例报道并文献复习[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(01): 54-57.
[11] 许培, 邓美莲, 孙雯, 潘兴飞, 陈敦金, 刘明星. "三线防控"模式在新冠肺炎疫情期间妇产科患者门诊就诊管理实践探讨[J]. 中华产科急救电子杂志, 2022, 11(01): 27-32.
[12] 张仁奎, 施林生. 2021心血管急危重症研究进展[J]. 中华心脏与心律电子杂志, 2022, 10(03): 185-189.
[13] 耿文奇, 曹锦亚, 段艳平, 魏镜, 蒋静, 赵晓晖. 新型冠状病毒肺炎疫情早期对北京协和医院发热门诊医务人员心理支持特点分析[J]. 中华卫生应急电子杂志, 2022, 08(05): 293-299.
[14] 张慧丽, 沈君华, 季建峰, 邢媛媛. COVID-19疫情期间江苏省某三甲综合医院急诊救治疾病谱与2019年同期比较分析[J]. 中华卫生应急电子杂志, 2022, 08(04): 211-215.
[15] 卢洪洲. 全球疫情趋势与科技抗疫的中国方案[J]. 中华卫生应急电子杂志, 2021, 07(04): 256-256.
阅读次数
全文


摘要