切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2022, Vol. 10 ›› Issue (01) : 83 -87. doi: 10.3877/cma.j.issn.2095-5782.2022.01.015

综述

镍钛合金支架表面修饰进展
段林1, 何艳艳2, 李天晓2, 陈松2, 贺迎坤2,(), 吴海刚3,()   
  1. 1. 450003 河南郑州,河南大学人民医院卒中中心神经外科;河南省脑血管病国际联合实验室
    2. 河南省人民医院介入中心脑血管病科
    3. 475004 河南开封,河南大学生命科学院
  • 收稿日期:2021-04-07 出版日期:2022-02-25
  • 通信作者: 贺迎坤, 吴海刚
  • 基金资助:
    河南省高等学校重点科研项目(21A320002); 河南省中青年卫生健康科技创新人才培养项目(YXKC2020041); 河南省医学科技攻关计划省部共建青年项目(SBGJ202003004)

Progress in surface modification of nitinol stent

Lin Duan1, Yanyan He2, Tianxiao Li2, Song Chen2, Yingkun He2,(), Haigang Wu3,()   

  1. 1. Neurosurgery Department of Stroke Center, Henan University People's Hospital; Henan International Joint Laboratory of Cerebrovascular Disease
    2. Cerebrovascular Department of Interventional Center, Henan Provincial People's Hospital, Henan Zhengzhou 450003
    3. School of Sciences, Henan University, Henan Kaifeng 475004, China
  • Received:2021-04-07 Published:2022-02-25
  • Corresponding author: Yingkun He, Haigang Wu
  • About author:
    Co-first authors: Duan Lin, He Yanyan
引用本文:

段林, 何艳艳, 李天晓, 陈松, 贺迎坤, 吴海刚. 镍钛合金支架表面修饰进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 83-87.

Lin Duan, Yanyan He, Tianxiao Li, Song Chen, Yingkun He, Haigang Wu. Progress in surface modification of nitinol stent[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2022, 10(01): 83-87.

近年来生物金属材料已被广泛应用于医疗领域,大多数原材料为钴铬、铁、镁、锌、镍、钛等;其中镍钛合金(NiTi)因具有优异的机械性能和良好的生物相容性,外加微创介入医学的兴起及其在治疗方面对医疗耗材器械精准化的需求,使NiTi在血管介入治疗中被广泛应用。但NiTi支架在生物相容性、耐腐蚀性、术后内皮化延迟及再狭窄等方面的问题仍有待解决。通过对NiTi材料进行精细的设计和适宜的表面涂层修饰,提高医用NiTi的生物相容性和耐腐蚀性,是NiTi未来研究发展的重要方向。文章将从NiTi的生物学特性、表面修饰两个方面,阐述NiTi作为支架材料的研究现状,并系统分析其在血管植入物方面面临的问题。

Recently, the biological metal materials have been widely utilized in medicinal implantation, and the main component of these materials are cobalt chromium, iron, magnesium, zinc, nickel and titanium, respectively. Owing to the excellent of mechanical properties and biocompatibility of nitinal, NiTi alloys have been widely applied in vascular interventional treatment. However, the critical unsolved problems of NiTi alloy network contains the immune-response, anti-erosion, delayed endothelialization and restenosis, which have limited the further application in vascular interventional treatments. By precisely regulating the components of coating layers of NiTi alloys, the biocompatibility and anti-erosion can be significantly improved, which is the critical direction for medical alloy surface modification. In this paper, the current research status of NiTi alloys as scaffold material is described from the biological characteristics and surface modification of NiTi alloys, and the problems faced by it in vascular implants are systematically analyzed.

[1]
陈力, 王武. 表面修饰在神经介入治疗材料中应用和进展[J]. 介入放射学杂志, 2020, 7(29): 730-736.
[2]
Zhu Y, Zhang H, Zhang Y, et al. Endovascular metal devices for the treatment of cerebrovascular diseases[J]. Adv Mater, 2019, 31(8): e1805452.
[3]
Jaff MR, Nelson T, Ferko N, et al. Endovascular interventions for femoropopliteal peripheral artery disease: a network meta-analysis of current technologies[J]. J Vasc Interv Radiol, 2017, 28(12): 1617-1627.
[4]
Gilbert JL. Corrosion in the human body: metallic implants in the complex body environment[J]. Corrosion-Us, 2017, 73(12): 1478-1495
[5]
Eliaz N. Corrosion of metallic biomaterials: a review[J]. Materials (Basel), 2019, 12(3): 407-500.
[6]
Dong P, Yao R, Yan Z, et al. Microstructure and corrosion resistance of laser-welded crossed nitinol wires[J]. Materials (Basel), 2018, 11(5): 8217-8230.
[7]
Dotter CT. Transluminally-placed coilspring endarterial tube grafts. long-term patency in canine popliteal artery[J]. Invest Radiol, 1969, 4(5): 329-332.
[8]
Kassab E, Marquardt A, Neelakantan L, et al. On the electropolishing of niti braided stents - challenges and solutions[J]. Materialwiss Werkst, 2014, 45(10): 920-929.
[9]
Wu W, Liu XJ, Han HM, et al. Electropolishing of niti for Improving biocompatibility[J]. J Mater Sci Technol, 2008, 24(6): 926-930.
[10]
Wang J, An Q, Li D, et al. Heparin and vascular endothelial growth factor loaded poly(l-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment[J]. J Biomed Nanotechnol, 2015, 11(11): 1947-1960.
[11]
Schmidt A, Brixius K, Bloch W. Endothelial precursor cell migration during vasculogenesis[J]. Circ Res, 2007, 101(2): 125-136.
[12]
Yang R, Thomas GR, Bunting S, et al. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance[J]. J Cardiovasc Pharmacol, 1996, 27(6): 838-844.
[13]
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2): 86-100.
[14]
es-Souni M, es-Souni M, BrandIes HF. On the transformation behaviour, mechanical properties and biocompatibility of two niti-based shape memory alloys:niti42 and niti42cu7[J]. Biomaterials, 2001, 22(15): 2153-2161.
[15]
Lu X, Bao X, Huang Y, et al. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles[J]. Biomaterials, 2009, 30(2): 141-148.
[16]
Balla VK, Banerjee S, Bose S, et al. Direct laser processing ofa tantalum coating on titanium for bone replacement structures[J]. Acta Biomater, 2010, 6(6): 2329-2334.
[17]
Winn B, Quarles CD, Marcus RK, et al. Nickel ions inhibit alpha-actin expression and decrease aspect ratio of rat vascular smooth muscle cells in vitro[J]. Metallomics, 2011, 3(9): 934-940.
[18]
Haider W, Munroe N, Tek V, et al. Cytotoxicity of metal Ions released from nitinol alloys on endothelial cells J]. J Mater Eng Perform, 2011, 20(4): 816-818.
[19]
Nagaraja S, Sullivans JL, Stafford PR, et al. Impact of nitinol stent surface processing on in-vivo nickel release and biological response[J]. Acta Biomater, 2018, 5(72): 424-433.
[20]
孔令华, 贺迎坤, 李天晓, 等. 镁基合金生物可降解支架的国内外研究进展[J]. 中华介入放射学电子杂志, 2020, 1(8): 83-88.
[21]
Nagaraja S, Pelton AR. Corrosion resistance of a nitinol ocular microstent: implications on biocompatibility[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(6): 2681-2690.
[22]
Robertson SW, Ritchie RO. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects[J]. Biomaterials, 2007, 28(4): 700-709.
[23]
Shabalovskaya S, Anderegg J, van Humbeeck J. Critical overview of nitinol surfaces and their modifications for medical applications[J]. Acta Biomater, 2008, 4(3): 447-467.
[24]
于振涛, 韩建业, 麻西群, 等. 生物医用钛合金材料的生物及力学相容性[J]. 中国组织工程研究, 2013, 17(25): 4707-4714.
[25]
刘汉卿, 魏修亭, 李志永, 等. 镍钛合金管电化学抛光工艺[J]. 电镀与涂饰, 2020, 39(21): 1501-1505.
[26]
Kim J, Park JK, Kim HK, et al. Optimization of electropolishing on niti alloy stents and its influence on corrosion behavior[J].J Nanosci Nanotechnol, 2017, 17(4): 2333-2339.
[27]
Yao X, Liu J, Yang C, et al. Hydrogel paint[J]. Adv Mater, 2019, 31(39): e1903062.
[28]
Shabalovskaya SA, Rondelli GC, Undisz AL, et al. The electrochemical characteristics of native nitinol surfaces[J]. Biomaterials, 2009, 30(22): 3662-3671.
[29]
Neelakantan L, Hassel AW. Rotating disc electrode study of the electropolishing mechanism of niti in methanolic sulfuric acid[J]. Electrochim Acta, 2007, 53(2): 915-919.
[30]
Kim D, Sin K, Sung D, et al. Effect of added ethanol in ethylene glycol-nacl electrolyte on titanium electropolishing[J]. Corros Sci, 2015, 98(9): 494-499.
[31]
Nam HG, Yoo CM, Baek SM, et al. Enhancement of mechanical properties and testing of nitinol stents in cerebral aneurysm simulation models[J]. Artif Organs, 2015, 39(12): E213-226.
[32]
persaud-Sharma D, Munroe N, Mcgoron A. Electro and magneto-electropolished surface micro-patterning on binary and ternary nitinol[J]. Trends Biomater Artif Organs, 2012, 26(2): 74-85.
[33]
Haider W, Munroe N. Assessment of corrosion resistance and metal Ion leaching of nitinol alloys[J]. J Mater Eng Perform, 2011, 20(4): 812-815.
[34]
marashi-Najafi F, khalil-Allafi J, Etminanfar MR. Biocompatibility of hydroxyapatite coatings deposited by pulse electrodeposition technique on the nitinol superelastic alloy[J]. Mater Sci Eng C Mater Biol Appl, 2017, 76(1): 278-286.
[35]
Deng B, Bruzzaniti A, Cheng GJ. Enhancement of osteoblast activity on nanostructured niti/hydroxyapatite coatings on additive manufactured niti metal implants by nanosecond pulsed laser sintering[J]. Int J Nanomedicine, 2018, 13(30): 8217-8230.
[36]
Mohammadi F, Golafshan N, Kharaziha M, et al. Chitosan-heparin nanoparticle coating on anodized niti for improvement of blood compatibility and biocompatibility[J]. Int J Biol Macromol, 2019, 127(15): 159-168.
[37]
Wang F, Zhang Y, Chen X, et al. Ald mediated heparin grafting on nitinol for self-expanded carotid stents[J]. Colloids Surf B Biointerfaces, 2016, 143(6): 390-398.
[38]
Go C, Elsisy M, Chun Y, et al. A three-tier rescue stent improves outcomes over balloon occlusion in a porcine model of noncompressible hemorrhage[J]. J Trauma Acute Care Surg, 2020, 89(2): 320-328.
[39]
Chen Y, Tillman B, Go C, et al. A novel customizable stent graft that contains a stretchable eptfe with a laser-welded nitinol stent[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(4): 911-923.
[40]
周玉杰, 杨清, 马茜. 一种用于治疗冠脉穿孔的生物可吸收膜覆膜支架:中国, CN104490502A[P/OL]. 2015-04-08.
[41]
周腾飞, 朱良付, 李天晓. 影响急性缺血性脑卒中血管内治疗预后的相关因素分析[J]. 介入放射学杂志, 2017, 26(2): 99-104.
[1] 刘虹宏, 杨永红, 张冬花, 林运. 老年冠脉分叉病变主支支架植入后在损伤边支使用药物涂层球囊进行修复的临床研究[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 387-393.
[2] 耿晨昕, 于昊哲, 冯云. 关注眼用微针体系的构建策略[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 257-261.
[3] 俞春波, 周长松, 黄亮, 严卫忠, 李东. 内镜下猪离体大肠黏膜缝合术的实验研究[J]. 中华临床医师杂志(电子版), 2021, 15(02): 113-117.
[4] 师贞爱, 李承志, 张红, 刘玉龙, 李王海, 张艳. 斑块旋切术联合药物涂层球囊治疗股腘动脉病变的应用研究[J]. 中华介入放射学电子杂志, 2018, 06(03): 226-231.
阅读次数
全文


摘要