切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2022, Vol. 10 ›› Issue (01) : 75 -82. doi: 10.3877/cma.j.issn.2095-5782.2022.01.014

综述

微小RNA在脑缺血再灌注损伤中的研究现状与进展
江哲宇1, 蒋天鹏1, 周石1, 王黎洲1,()   
  1. 1. 550004 贵州贵阳,贵州医科大学附属医院介入科
  • 收稿日期:2021-04-06 出版日期:2022-02-25
  • 通信作者: 王黎洲
  • 基金资助:
    国家自然科学基金(82060333)

Research status and progress of microRNA in cerebral ischemia-reperfusion injury

Zheyu Jiang1, Tianpeng Jiang1, Shi Zhou1, Lizhou Wang1,()   

  1. 1. Department of Interventional Radiology and Vascular Surgery, Affiliated Hospital of Guizhou Medical University, Guizhou Guiyang 550004, China
  • Received:2021-04-06 Published:2022-02-25
  • Corresponding author: Lizhou Wang
引用本文:

江哲宇, 蒋天鹏, 周石, 王黎洲. 微小RNA在脑缺血再灌注损伤中的研究现状与进展[J]. 中华介入放射学电子杂志, 2022, 10(01): 75-82.

Zheyu Jiang, Tianpeng Jiang, Shi Zhou, Lizhou Wang. Research status and progress of microRNA in cerebral ischemia-reperfusion injury[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2022, 10(01): 75-82.

脑缺血性卒中是导致成人死亡和残疾的主要原因之一,血管再通获得及时的再灌注是临床治疗的首选方法,然而再灌注可诱发脑缺血再灌注损伤。研究结果显示,微小RNA(miRs)可作为潜在的治疗靶点,在脑缺血再灌注损伤中发挥重要作用。作为近年研究的热点,miRs的异常表达及功能受到更多关注。尽管已有相关研究提示了调节miRs对治疗脑缺血再灌注损伤的安全性和有效性,然而,目前尚缺乏相关的随机对照临床研究数据来证实,以确定统一标准指导。文章就miRs参与脑缺血再灌注损伤的信号通路、病理机制、以及各种相互作用等进行综述。

Ischemic stroke is one of the leading cause of death and disability in adults. Vascular recanalization to obtain timely reperfusion is the preferred treatment in clinical practice. However, reperfusion can induce cerebral ischemia-reperfusion injury (CIRI). The present research reveal that microRNAs (miRs) have been implicated in CIRI and could serve as therapeutic targets. As a research hotspot, the abnormal expression and function of miRs have been receiving more and more attention. Although relevant studies have suggested the safety and effectiveness of regulating miRs in the treatment of CIRI, there are no randomized controlled trials to formulate uniform standard guideline. This article aims to make a comprehensive review about the current status and progress of the research on the signaling pathways, pathological mechanisms, and various interactions of miRs involved in CIRI.

表1 miRNA在CIRI中的表达
进程 CIRI诱导下调 靶点 参考文献 CIRI诱导上调 靶点 参考文献
凋亡相关            
  miR-211 PUMA [54] miR-99b IGF1R [54]
  miR-874-3p BCL2LI3 [54] miR-106-5p Mcl-1 [54]
  miR-29a AQP4 [54] miR-138 SIRT1 [54]
  miR-496 BCL2LI4 [54] miR-224-3p FIP200 [54]
  miR-544 IRAK4 [54] miR-155 GATA3 [54]
  miR-219a-5p Pde4d [54] miR-429 GTAA3 [54]
  miR-26a-5p DAPK1 [54] miR-10a PI3K [54]
  miR-137 Notch1 [54] miR-223 IGF1R [54]
  miR-124 Ku70 [54] miR-370 SIRT1 [54]
  miR-431 Rho [54] miR-128 WNT1 [32]
与氧化应激相关            
  miR-144-3p Brg1 [54] miR-144 Nrl2 [54]
  miR-652 NOX2 [54] miR-142-5p Nrl2 [54]
  miR-124-5p NOX2 [54] miR-153 Nrl2 [54]
  miR-7a-5p a-Syn [54] miR-93 Nrl2 [54]
  miR-375 Ctgf [54] miR-217 SIRT1 [54]
  miR-29a PUMA [54] miR-135a GSK-3β [54]
  miR-455-3p TP53INP1 [54] miR-224-3p FIP200 [54]
        miR-421 MCL1 [54]
        miR-134 Nrf2 [39]
与炎症反应相关            
  miR-223 NLRP3 [54] miR-193b-3p 5-LOX [54]
  miR-211-5p COX-2 [54] miR-19a-3p IGFBP3 [54]
  miR-338-5p Ctgf [54] miR-155 MafB [54] [30]
  miR-544 IRAK4 [54] miR-217 SIRT1 [13][54]
  miR-182-5p TLR4 [54] miR-124 RhoA [28][29]
  miR-146a IRAK1 [54]      
  miR-338-5p Ctgf [26]      
  miR-1906 JAK2/STAT3 [22]      
  miR-22 VEGF [27]      
与兴奋性毒性相关            
  miR-1000 VGlut [54] miR-107 GLT-1 [54]
  miR-223 GluR2,NR2B [54]      
与细胞自噬相关            
  miR-30 Beclin1 [54] miR-124 PI3K [54]
  miR-298 Act1 [54]      
  miR-138 SIRT1 [54]      
  miR-202-5p eIF4E [54]      
与血脑屏障功能相关            
  miR-539 MMP-9 [54] miR-130a [52]
  miR-21 MAP2K [52] [54] miR-150 [52]
             
  miR-429 Cxcll [54] miR-17 [52]
  miR-149-5p SIPR2 [54] miR-222 [52]
  miR-126 [52] miR-378 [52]
  miR-150 [52] miR-20a [52]
        miR-19a/b [52]
低氧(HIF-1)            
  miR-613 ATG3轴 [21] miR-373 [52]
  miR-26b [29] miR-24-1 [52]
        miR-181c [52]
        miR-210 [52]
        miR-26a-2 [52]
        miR-23 [52]
        miR-24 [52]
        miR-103 [52]
        miR-107 [52]
其他            
  miR-148b-3 [57] miR-292-5p [52]
  miR-488-3p [53] miR-290 [52]
        miR-206 [52]
        miR-215 [52]
        miR-214 [52]
        miR-223 [52]
        miR-298 [52]
        miR-327 [52]
        miR-494 Sox8 [52]
        miR-497 [52]
        miR-7674-5p [57]
表2 在CIRI中miRs的影响
促CIRI发生发展 信号通路/轴 参考文献 改善CIRI预后 信号通路/轴 参考文献
miR-217 NF-κB [13] miR-579-3p NF-κB [14]
miR-22 PI3K/AKT/mTOR JAK/STAT3 [27] miR-193b-3p NF-κB [15]
miR-10a PI3K/Akt/mTOR [19] miR-429 NF-κB [16]
miR-455-3p TP53INP1轴 [34] miR-26b-5p NF-κB [17]
miR-134 CREB/Nrf2 [39] miR-1906 NF-κB [18]
miR-148b-3p Sestrin2/Nrf2/ARE轴 [40] miR-182-5p NF-κB [18]
miR-302b3p GSK-3β)/Nrf2/ARE轴 [41] miR-372-3p NF-κB [18]
miR-199a-5p Brg1)/Nrf2/HO-1轴 [42] miR-26 PTEN轴 [19]
miR-10a caspase-3活性和Bax [19] miRNA-26b-5p PTEN轴 [20]
miR-224-3p caspase-3 [54] miR-216a JAK2/STAT3 [22]
miR-155 caspase-3 [54] miR-1906 JAK2/STAT3 [22]
miR-429 caspase-3 [54] miR-26a PI3K/Akt、MAPK/ERK [19]
miR-10a PI3K/Akt/ mTOR [54] miR-338-5p AMPK/mTOR [26]
miR-370 SIRT6 [54] miR-375 p21/PI3K/Akt [19]
miR-144 Nrf2/ARE轴 [54] miR-124 PI3K/Akt/ mTOR [29]
miR-142-5p Nrf2/ARE轴 [54] miR-128-3p MAPK WNT1 [32][33]
miR-153 Nrf2/ARE轴 [54] miR-30b PI3K/Akt/eNOS [44]
miR-93 Nrf2/ARE轴 [54] miR-424 PI3K/Akt/eNOS [44]
miR-217 SIRT1 [54] miR-126 PI3K/Akt/eNOS [29]
miR-135a GSK-3β [54] miR-451a 靶向Rac1 [45]
miR-421 MCL1 [54] miR-193b-3p 5-脂氧合酶 [15]
miR-224-3p FIP200 [54] miR-204-5p NF-κB [46]
miR-193b-3p 5-LOX [54] miR-579-3p 炎性细胞因子TNF-a [14]
miR-19a-3p IGFBP3 [54] miR-193b-3p 抑制TGF-β活性 [15]
miR-155 MafB [54] miR-22-3p caspase-3活性和Bax [49]
        BMF/BMP2轴  
miR-217 SIRT1 [54] miR-579-3p caspase-3活性和Bax [14]
miR-107 GLT-1 [54] miR-26a caspase-3活性和Bax [19]
miR-124 PI3K/Akt/eNOS [54] miR-488-3p 靶向VPS4B [53]
[1]
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
[2]
张艾嘉, 王爽, 王萍, 等.缺血性脑卒中的病理机制研究进展及中医药防治[J]. 中国实验方剂学杂志, 2020, 26(5): 227-240.
[3]
Wu G, Zhu L, Yuan X, et al. Britanin ameliorates cerebral ischemia-reperfusion injury by inducing the Nrf2 protective pathway[J]. Antioxidants and Redox Signalling, 2017, 27(11):754-768.
[4]
Ye J, Das S, Roy A, et al. Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway[J]. Molecular Neurobiology, 2019, 56(3): 2123-2136.
[5]
彭智远, 刘旺华, 曹雯. 脑缺血再灌注损伤细胞凋亡机制的研究进展[J]. 中华中医药学刊, 2017, 35(8): 1957-1961.
[6]
Gao JQ, Wang P, Yan JW, et al. Shear stress rescued the neuronal impairment induced by global cerebral ischemia reperfusion via activating PECAM-1-eNOS-NO pathway[J]. Front Cell Dev Biol, 2020, 8: 631286-631286.
[7]
Liu G, Wang T, Wang T, et al. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats[J]. Biomed Rep.2013, 1(6): 861-867.
[8]
陈萌, 梁秀军, 王爱乐, 等. 脑缺血再灌注损伤大鼠Beclin-1与Bcl-xL、Caspase-2的表达及Cystatin C干预作用的影响[J]. 中风与神经疾病杂志, 2017, 34(9): 801-806.
[9]
Gowen A, Shahjin F, Chand S, et al. Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications[J]. Front Cell Dev Biol, 2020, 8: 149-149.
[10]
Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles[J].J Clin Invest, 2016, 126(4): 1173-1180.
[11]
杨鹏, 何洋, 李成, 等. 微小核糖核酸-7调控表皮细胞生长因子受体对肝癌细胞增殖和转移的影响[J]. 介入放射学杂志, 2021, 30(1): 43-47.
[12]
Zhang X, Liu L, Yuan X, et al. JMJD3 in the regulation of human diseases[J]. Protein Cell, 2019, 10(12): 864-882.
[13]
Rao G, Zhang W, Song S. MicroRNA217 inhibition relieves cerebral ischemia/reperfusion injury by targeting SIRT1[J]. Mol Med Rep, 2019, 20(2): 1221-1229.
[14]
Jia J, Cui Y, Tan Z, et al. MicroRNA-579-3p exerts neuroprotective effects against ischemic stroke via anti-inflammation and anti-apoptosis[J]. Neuropsychiatr Dis Treat, 2020, 16: 1229-1238.
[15]
Chen Z, Yang J, Zhong J, et al. MicroRNA-193b-3p alleviates focal cerebral ischemia and reperfusion-induced injury in rats by inhibiting 5-lipoxygenase expression[J]. Exp Neurol 2020, 327: 113223.
[16]
Leng J, Liu W, Li L, et al. MicroRNA-429/cxcl1 axis protective against oxygen glucose deprivation/reoxygenation-induced injury in brain microvascular endothelial cells[J]. Dose Response, 2020, 18(2): 1559325820913785.
[17]
Li G, Xiao L, Qin H, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion[J]. Cell Cycle, 2020, 19(9): 1022-1035.
[18]
Yang B, Zang L, Cui J, et al. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction[J]. Stem Cell Res Ther, 2021, 12(1): 125.
[19]
Guo XL, Liang H, Sun Y, et al. MicroRNA-26a regulates cerebral ischemia injury through targeting PTEN[J]. Eur Rev Med Pharmacol Sci, 2019, 23(16): 7033-7041.
[20]
Xiao Y, Zheng S, Duan N, et al. MicroRNA-26b-5p alleviates cerebral ischemia-reperfusion injury in rats via inhibiting the N-myc/PTEN axis by downregulating KLF10 expression[J]. Hum Exp Toxicol, 2021, 40(8): 1250-1262.
[21]
Wei L, Peng Y, Yang XJ, et al. Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway[J]. Kaohsiung J Med Sci, 2021, 37(6): 468-478.
[22]
Yu X, Li X. microRNA-1906 protects cerebral ischemic injury through activating Janus kinase 2/signal transducer and activator of transcription 3 pathway in rats[J]. Neuroreport, 2020, 31(12): 871-878.
[23]
Sabatini DM. mTOR and cancer: insights into a complex relationship[J]. Nat Rev Cancer, 2006, 6(9): 729-34.
[24]
Averous J, Proud CG. When translation meets transformation: the mTOR story[J]. Oncogene, 2006, 25(48): 6423-6435.
[25]
向雷, 黄智, 张帅, 等.磷脂酰肌醇3激酶调节亚基1过表达对肝细胞癌进展的影响[J]. 介入放射学杂志, 2019, 28(10): 962-968.
[26]
Yi X, Fang Q, Li L. MicroRNA-338-5p alleviates cerebral ischemia/reperfusion injury by targeting connective tissue growth factor through the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway[J]. Neuroreport, 2020, 31(3): 256-264.
[27]
Sun H, Shi K, Xie D, et al. Long noncoding RNA C2dat1 protects H9c2 cells against hypoxia injury by downregulating miR-22[J].J Cell Physiol, 2019, 234(11): 20623-20633.
[28]
Miao W, Yan Y, Bao TH, et al. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124[J]. Biomed Pharmacother, 2020, 126: 109786.
[29]
Hao R, Sun B, Yang L, et al. RVG29-modified microRNA-loaded nanoparticles improve ischemic brain injury by nasal delivery[J]. Drug Deliv, 2020, 27(1): 772-781.
[30]
Jiang T, Zhou S, Li X, et al. MicroRNA-155 induces protection against cerebral ischemia/reperfusion injury through regulation of the Notch pathway in vivo[J]. Exp Ther Med, 2019, 18(1): 605-613.
[31]
Daskalopoulos EP, Blankesteijn WM. Effect of interventions in WNT signaling on healing of cardiac injury: a systematic review[J]. Cells, 2021, 10(2): 207.
[32]
Fang H, Li HF, Yang M, et al. MicroRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1[J]. Biomed Pharmacother, 2019, 113: 108671.
[33]
Liu P, Han Z, Ma Q, et al. Upregulation of microRNA-128 in the peripheral blood of acute ischemic stroke patients is correlated with stroke severity partially through inhibition of neuronal cell cycle reentry[J]. Cell Transplant, 2019, 28(7): 839-850.
[34]
Fan Y, Wei L, Zhang S, et al. LncRNA SNHG15 knockdown protects against OGD/R-induced neuron injury by downregulating TP53INP1 expression via binding to miR-455-3p[J]. Neurochem Res, 2021, 46(4): 1019-1030.
[35]
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury[J]. Angiogenesis, 2020, 23(3): 299-314.
[36]
Zhou M, Yu T, Fang X, et al. Short-term dietary restriction ameliorates brain injury after cardiac arrest by modulation of mitochondrial biogenesis and energy metabolism in rats[J]. Ann Transl Med, 2021, 9(1): 8.
[37]
Achzet LM, Davison CJ, Shea M, et al. Oxidative stress underlies the ischemia/reperfusion-induced internalization and degradation of AMPA receptors[J]. Int J Mol Sci, 2021, 22(2): 717.
[38]
Wang C, Wan H, Wang Q, et al. Safflor yellow B attenuates ischemic brain injury via downregulation of long noncoding AK046177 and inhibition of microRNA-134 expression in rats[J]. Oxid Med Cell Longev, 2020, 2020: 4586839.
[39]
Du Y, Ma X, Ma L, et al. Inhibition of microRNA-148b-3p alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 hippocampal neuron via reinforcing Sestrin2/Nrf2 signalling[J]. Clin Exp Pharmacol Physiol, 2020, 47(4): 561-570.
[40]
Zhang Z, Wang N, Zhang Y, et al. Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19[J]. Chem Biol Interact, 2019, 309: 108705.
[41]
Li F, Liang J, Tong H, et al. Inhibition of microRNA-199a-5p ameliorates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 neurons by targeting Brg1 to activate Nrf2/HO-1 signalling[J]. Clin Exp Pharmacol Physiol, 2020, 47(6): 1020-1029.
[42]
Zou ZY, Liu J, Chang C, et al. Biliverdin administration regulates the microRNA-mRNA expressional network associated with neuroprotection in cerebral ischemia reperfusion injury in rats[J]. Int J Mol Med, 2019, 43(3): 1356-1372.
[43]
Li H, Luo Y, Liu P, et al. Exosomes containing miR-451a is involved in the protective effect of cerebral ischemic preconditioning against cerebral ischemia and reperfusion injury[J]. CNS Neurosci Ther, 2021, 27(5): 564-576.
[44]
Pan Q, Wang Y, Lan Q, et al. Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring microRNA-126[J]. Stem Cells Int, 2019, 2019: 2831756.
[45]
Zhang H, Park JH, Maharjan S, et al. Sac-1004, a vascular leakage blocker, reduces cerebral ischemia—reperfusion injury by suppressing blood-brain barrier disruption and inflammation[J].J Neuroinflammation, 2017, 14(1): 122.
[46]
Diaz-Cañestro C, Reiner MF, Bonetti NR, et al. AP-1 (activated protein-1) transcription factor JunD regulates ischemia/reperfusion brain damage via IL-1β (interleukin-1β)[J]. Stroke, 2019, 50(2): 469-477.
[47]
Jiang S, Dandu C, Geng X. Clinical application of nitric oxide in ischemia and reperfusion injury: a literature review[J]. Brain Circ, 2020, 6(4): 248-253.
[48]
Liu G, Wang T, Wang T, et al. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats[J]. Biomed Rep, 2013, 1(6): 861-867.
[49]
Zhang Y, Liu J, Su M, et al. Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis[J]. Stem Cell Res Ther, 2021, 12(1): 111.
[50]
Zhu Y, Yu J, Gong J, et al. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia[J]. Aging (Albany NY), 2021, 13(3): 3405-3427.
[51]
Fu K, Chen M, Zheng H, et al. Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway[J]. Transl Neurosci, 2021, 12(1): 20-31.
[52]
Yin KJ, Hamblin M, Chen YE. Angiogenesis-regulating microRNAs and ischemic stroke[J]. Curr Vasc Pharmacol, 2015, 13(3): 352-365.
[53]
Zhou L, Yang W, Yao E, et al. MicroRNA-488-3p regulates neuronal cell death in cerebral ischemic stroke through vacuolar protein sorting 4B (VPS4B)[J]. Neuropsychiatr Dis Treat, 2021, 17: 41-55.
[54]
李俊杰, 蒋海燕, 彭丽佳, 等.微小RNAs-mRNAs调控轴在脑缺血-再灌注损伤机制中的作用进展[J/OL]. 重庆医科大学学报: 1-8[2021-02-17]. https://doi.org/10.13406/j.cnki.cyxb.002658.
[55]
Kong Y, Han JH. MicroRNA: biological and computational perspective[J]. Genomics Proteomics & Bioinformatics, 2005, 3(2): 62-72.
[56]
Jeyaseelan K, Herath WB, Armugam A. MicroRNAs as therapeutic targets in human diseases[J]. Expert Opin Ther Targets, 2007, 11(8): 1119-29.
[57]
Takata T, Nonaka W, Iwama H, et al. Light exercise without lactate elevation induces ischemic tolerance through the modulation of microRNA in the gerbil hippocampus[J]. Brain Res, 2020, 1732: 146710.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[3] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[4] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[5] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[6] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[7] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[8] 李德伦, 袁思宇, 刘安琪. 微小RNA-155在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 39-43.
[9] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[10] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[11] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[12] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[13] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[14] 神童, 申程, 甘立军. 囊泡在冠状动脉钙化过程中的作用[J]. 中华诊断学电子杂志, 2023, 11(01): 1-4.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要