[1] |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
|
[2] |
张艾嘉, 王爽, 王萍, 等.缺血性脑卒中的病理机制研究进展及中医药防治[J]. 中国实验方剂学杂志, 2020, 26(5): 227-240.
|
[3] |
Wu G, Zhu L, Yuan X, et al. Britanin ameliorates cerebral ischemia-reperfusion injury by inducing the Nrf2 protective pathway[J]. Antioxidants and Redox Signalling, 2017, 27(11):754-768.
|
[4] |
Ye J, Das S, Roy A, et al. Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway[J]. Molecular Neurobiology, 2019, 56(3): 2123-2136.
|
[5] |
彭智远, 刘旺华, 曹雯. 脑缺血再灌注损伤细胞凋亡机制的研究进展[J]. 中华中医药学刊, 2017, 35(8): 1957-1961.
|
[6] |
Gao JQ, Wang P, Yan JW, et al. Shear stress rescued the neuronal impairment induced by global cerebral ischemia reperfusion via activating PECAM-1-eNOS-NO pathway[J]. Front Cell Dev Biol, 2020, 8: 631286-631286.
|
[7] |
Liu G, Wang T, Wang T, et al. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats[J]. Biomed Rep.2013, 1(6): 861-867.
|
[8] |
陈萌, 梁秀军, 王爱乐, 等. 脑缺血再灌注损伤大鼠Beclin-1与Bcl-xL、Caspase-2的表达及Cystatin C干预作用的影响[J]. 中风与神经疾病杂志, 2017, 34(9): 801-806.
|
[9] |
Gowen A, Shahjin F, Chand S, et al. Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications[J]. Front Cell Dev Biol, 2020, 8: 149-149.
|
[10] |
Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles[J].J Clin Invest, 2016, 126(4): 1173-1180.
|
[11] |
杨鹏, 何洋, 李成, 等. 微小核糖核酸-7调控表皮细胞生长因子受体对肝癌细胞增殖和转移的影响[J]. 介入放射学杂志, 2021, 30(1): 43-47.
|
[12] |
Zhang X, Liu L, Yuan X, et al. JMJD3 in the regulation of human diseases[J]. Protein Cell, 2019, 10(12): 864-882.
|
[13] |
Rao G, Zhang W, Song S. MicroRNA217 inhibition relieves cerebral ischemia/reperfusion injury by targeting SIRT1[J]. Mol Med Rep, 2019, 20(2): 1221-1229.
|
[14] |
Jia J, Cui Y, Tan Z, et al. MicroRNA-579-3p exerts neuroprotective effects against ischemic stroke via anti-inflammation and anti-apoptosis[J]. Neuropsychiatr Dis Treat, 2020, 16: 1229-1238.
|
[15] |
Chen Z, Yang J, Zhong J, et al. MicroRNA-193b-3p alleviates focal cerebral ischemia and reperfusion-induced injury in rats by inhibiting 5-lipoxygenase expression[J]. Exp Neurol 2020, 327: 113223.
|
[16] |
Leng J, Liu W, Li L, et al. MicroRNA-429/cxcl1 axis protective against oxygen glucose deprivation/reoxygenation-induced injury in brain microvascular endothelial cells[J]. Dose Response, 2020, 18(2): 1559325820913785.
|
[17] |
Li G, Xiao L, Qin H, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion[J]. Cell Cycle, 2020, 19(9): 1022-1035.
|
[18] |
Yang B, Zang L, Cui J, et al. Circular RNA TTC3 regulates cerebral ischemia-reperfusion injury and neural stem cells by miR-372-3p/TLR4 axis in cerebral infarction[J]. Stem Cell Res Ther, 2021, 12(1): 125.
|
[19] |
Guo XL, Liang H, Sun Y, et al. MicroRNA-26a regulates cerebral ischemia injury through targeting PTEN[J]. Eur Rev Med Pharmacol Sci, 2019, 23(16): 7033-7041.
|
[20] |
Xiao Y, Zheng S, Duan N, et al. MicroRNA-26b-5p alleviates cerebral ischemia-reperfusion injury in rats via inhibiting the N-myc/PTEN axis by downregulating KLF10 expression[J]. Hum Exp Toxicol, 2021, 40(8): 1250-1262.
|
[21] |
Wei L, Peng Y, Yang XJ, et al. Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway[J]. Kaohsiung J Med Sci, 2021, 37(6): 468-478.
|
[22] |
Yu X, Li X. microRNA-1906 protects cerebral ischemic injury through activating Janus kinase 2/signal transducer and activator of transcription 3 pathway in rats[J]. Neuroreport, 2020, 31(12): 871-878.
|
[23] |
Sabatini DM. mTOR and cancer: insights into a complex relationship[J]. Nat Rev Cancer, 2006, 6(9): 729-34.
|
[24] |
Averous J, Proud CG. When translation meets transformation: the mTOR story[J]. Oncogene, 2006, 25(48): 6423-6435.
|
[25] |
向雷, 黄智, 张帅, 等.磷脂酰肌醇3激酶调节亚基1过表达对肝细胞癌进展的影响[J]. 介入放射学杂志, 2019, 28(10): 962-968.
|
[26] |
Yi X, Fang Q, Li L. MicroRNA-338-5p alleviates cerebral ischemia/reperfusion injury by targeting connective tissue growth factor through the adenosine 5'-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway[J]. Neuroreport, 2020, 31(3): 256-264.
|
[27] |
Sun H, Shi K, Xie D, et al. Long noncoding RNA C2dat1 protects H9c2 cells against hypoxia injury by downregulating miR-22[J].J Cell Physiol, 2019, 234(11): 20623-20633.
|
[28] |
Miao W, Yan Y, Bao TH, et al. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124[J]. Biomed Pharmacother, 2020, 126: 109786.
|
[29] |
Hao R, Sun B, Yang L, et al. RVG29-modified microRNA-loaded nanoparticles improve ischemic brain injury by nasal delivery[J]. Drug Deliv, 2020, 27(1): 772-781.
|
[30] |
Jiang T, Zhou S, Li X, et al. MicroRNA-155 induces protection against cerebral ischemia/reperfusion injury through regulation of the Notch pathway in vivo[J]. Exp Ther Med, 2019, 18(1): 605-613.
|
[31] |
Daskalopoulos EP, Blankesteijn WM. Effect of interventions in WNT signaling on healing of cardiac injury: a systematic review[J]. Cells, 2021, 10(2): 207.
|
[32] |
Fang H, Li HF, Yang M, et al. MicroRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1[J]. Biomed Pharmacother, 2019, 113: 108671.
|
[33] |
Liu P, Han Z, Ma Q, et al. Upregulation of microRNA-128 in the peripheral blood of acute ischemic stroke patients is correlated with stroke severity partially through inhibition of neuronal cell cycle reentry[J]. Cell Transplant, 2019, 28(7): 839-850.
|
[34] |
Fan Y, Wei L, Zhang S, et al. LncRNA SNHG15 knockdown protects against OGD/R-induced neuron injury by downregulating TP53INP1 expression via binding to miR-455-3p[J]. Neurochem Res, 2021, 46(4): 1019-1030.
|
[35] |
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury[J]. Angiogenesis, 2020, 23(3): 299-314.
|
[36] |
Zhou M, Yu T, Fang X, et al. Short-term dietary restriction ameliorates brain injury after cardiac arrest by modulation of mitochondrial biogenesis and energy metabolism in rats[J]. Ann Transl Med, 2021, 9(1): 8.
|
[37] |
Achzet LM, Davison CJ, Shea M, et al. Oxidative stress underlies the ischemia/reperfusion-induced internalization and degradation of AMPA receptors[J]. Int J Mol Sci, 2021, 22(2): 717.
|
[38] |
Wang C, Wan H, Wang Q, et al. Safflor yellow B attenuates ischemic brain injury via downregulation of long noncoding AK046177 and inhibition of microRNA-134 expression in rats[J]. Oxid Med Cell Longev, 2020, 2020: 4586839.
|
[39] |
Du Y, Ma X, Ma L, et al. Inhibition of microRNA-148b-3p alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 hippocampal neuron via reinforcing Sestrin2/Nrf2 signalling[J]. Clin Exp Pharmacol Physiol, 2020, 47(4): 561-570.
|
[40] |
Zhang Z, Wang N, Zhang Y, et al. Downregulation of microRNA-302b-3p relieves oxygen-glucose deprivation/re-oxygenation induced injury in murine hippocampal neurons through up-regulating Nrf2 signaling by targeting fibroblast growth factor 15/19[J]. Chem Biol Interact, 2019, 309: 108705.
|
[41] |
Li F, Liang J, Tong H, et al. Inhibition of microRNA-199a-5p ameliorates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in HT22 neurons by targeting Brg1 to activate Nrf2/HO-1 signalling[J]. Clin Exp Pharmacol Physiol, 2020, 47(6): 1020-1029.
|
[42] |
Zou ZY, Liu J, Chang C, et al. Biliverdin administration regulates the microRNA-mRNA expressional network associated with neuroprotection in cerebral ischemia reperfusion injury in rats[J]. Int J Mol Med, 2019, 43(3): 1356-1372.
|
[43] |
Li H, Luo Y, Liu P, et al. Exosomes containing miR-451a is involved in the protective effect of cerebral ischemic preconditioning against cerebral ischemia and reperfusion injury[J]. CNS Neurosci Ther, 2021, 27(5): 564-576.
|
[44] |
Pan Q, Wang Y, Lan Q, et al. Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring microRNA-126[J]. Stem Cells Int, 2019, 2019: 2831756.
|
[45] |
Zhang H, Park JH, Maharjan S, et al. Sac-1004, a vascular leakage blocker, reduces cerebral ischemia—reperfusion injury by suppressing blood-brain barrier disruption and inflammation[J].J Neuroinflammation, 2017, 14(1): 122.
|
[46] |
Diaz-Cañestro C, Reiner MF, Bonetti NR, et al. AP-1 (activated protein-1) transcription factor JunD regulates ischemia/reperfusion brain damage via IL-1β (interleukin-1β)[J]. Stroke, 2019, 50(2): 469-477.
|
[47] |
Jiang S, Dandu C, Geng X. Clinical application of nitric oxide in ischemia and reperfusion injury: a literature review[J]. Brain Circ, 2020, 6(4): 248-253.
|
[48] |
Liu G, Wang T, Wang T, et al. Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats[J]. Biomed Rep, 2013, 1(6): 861-867.
|
[49] |
Zhang Y, Liu J, Su M, et al. Exosomal microRNA-22-3p alleviates cerebral ischemic injury by modulating KDM6B/BMP2/BMF axis[J]. Stem Cell Res Ther, 2021, 12(1): 111.
|
[50] |
Zhu Y, Yu J, Gong J, et al. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia[J]. Aging (Albany NY), 2021, 13(3): 3405-3427.
|
[51] |
Fu K, Chen M, Zheng H, et al. Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway[J]. Transl Neurosci, 2021, 12(1): 20-31.
|
[52] |
Yin KJ, Hamblin M, Chen YE. Angiogenesis-regulating microRNAs and ischemic stroke[J]. Curr Vasc Pharmacol, 2015, 13(3): 352-365.
|
[53] |
Zhou L, Yang W, Yao E, et al. MicroRNA-488-3p regulates neuronal cell death in cerebral ischemic stroke through vacuolar protein sorting 4B (VPS4B)[J]. Neuropsychiatr Dis Treat, 2021, 17: 41-55.
|
[54] |
|
[55] |
Kong Y, Han JH. MicroRNA: biological and computational perspective[J]. Genomics Proteomics & Bioinformatics, 2005, 3(2): 62-72.
|
[56] |
Jeyaseelan K, Herath WB, Armugam A. MicroRNAs as therapeutic targets in human diseases[J]. Expert Opin Ther Targets, 2007, 11(8): 1119-29.
|
[57] |
Takata T, Nonaka W, Iwama H, et al. Light exercise without lactate elevation induces ischemic tolerance through the modulation of microRNA in the gerbil hippocampus[J]. Brain Res, 2020, 1732: 146710.
|