切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2020, Vol. 08 ›› Issue (02) : 97 -107. doi: 10.3877/cma.j.issn.2095-5782.2020.02.001

所属专题: 指南与规范 文献 指南共识

指南与共识

经动脉和静脉入路行神经介入手术:美国神经介入外科学会(SNIS)标准与指南委员会共识
RM Starke, B Snelling, F Al-Mufti, Huan Liu, Lina Wang, Yingkun He   
  1. 1. 450000 河南郑州,郑州大学人民医院介入中心脑血管病科、河南省人民医院、河南大学人民医院、河南省神经介入研发与应用工程、研究中心、河南省脑血管病国际联合实验室
  • 收稿日期:2020-02-28 出版日期:2020-05-25
  • 基金资助:
    国家卫健委脑防委中国脑卒中高危人群干预和适宜技术研究及推广项目(GN-2016R0006,GN-2018R0007); 河南省重点研发与推广专项(科技攻关)项目(202102310037); 河南省医学科技攻关计划省部共建项目(SBGJ2018063); 河南大学一流学科培育项目(2019YLZDJL11); 河南大学研究生教育创新与质量提升计划项目(SYL19030302)

Transarterial and transvenous access for neurointerventional surgery: report of the SNIS Standards and Guidelines Committee

RM Starke, B Snelling, F Al-Mufti, Huan Liu, Lina Wang, Yingkun He   

  • Received:2020-02-28 Published:2020-05-25
引用本文:

RM Starke, B Snelling, F Al-Mufti, Huan Liu, Lina Wang, Yingkun He. 经动脉和静脉入路行神经介入手术:美国神经介入外科学会(SNIS)标准与指南委员会共识[J]. 中华介入放射学电子杂志, 2020, 08(02): 97-107.

RM Starke, B Snelling, F Al-Mufti, Huan Liu, Lina Wang, Yingkun He. Transarterial and transvenous access for neurointerventional surgery: report of the SNIS Standards and Guidelines Committee[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2020, 08(02): 97-107.

文章旨在对神经介入手术中建立血管通路的技术和工具进行全面的综述。利用已发表的文章,回顾神经介入手术中血管通路的建立方法、部位、工具及技术相关资料,并根据数据质量、证据水平和适当的专家共识综合给出推荐意见。即使建立血管入路的工具和技术仍在不断发展,但目前的文献和经验仍支持神经介入手术中血管通路建立的一些原则。

图1 通过微穿刺针和导丝建立经桡动脉入路及采用腕带止血技术闭合血管
图2 应用微穿刺和微导丝在眼上静脉直接进行浅表穿刺时位置位于浅表,出血容易控制。眼眶上缘眼上静脉远侧和海绵窦由骨骼固定,穿刺时不易移动,但这些部位的出血难以控制
[1]
Berkhemer OA, Fransen PSS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke[J]. N Engl J Med, 2015, 372(1): 11-20.
[2]
Brott TG, Hobson RW, Howard G, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis[J]. N Engl J Med, 2010, 363(1): 11-23.
[3]
Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between defcit and infarct[J]. N Engl J Med, 2018, 378(1): 11-21.
[4]
Spetzler RF, McDougall CG, Zabramski JM, et al. The barrow ruptured aneurysm trial: 6-year results[J]. J Neurosurg, 2015, 123(3): 609-617.
[5]
Morrison LJ, Gent LM, Lang E, et al. Part 2: evidence evaluation and management of coflicts of interest: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2015, 132(18 Suppl 2): S368-382.
[6]
Marquis-Gravel G, Tremblay-Gravel M, Lévesque J, et al. Ultrasound guidance versus anatomical landmark approach for femoral artery access in coronary angiography: a randomized controlled trial and a meta-analysis[J]. J Interv Cardiol, 2018, 31(4): 496-503.
[7]
Ambrose JA, Lardizabal J, Mouanoutoua M, et al. Femoral micropuncture or routine introducer study (femoris)[J]. Cardiology, 2014, 129(1): 39-43.
[8]
Doyle BJ, Ting HH, Bell MR, et al. Major femoral bleeding complications after percutaneous coronary intervention: incidence, predictors, and impact on long-term survival among 17,901 patients treated at the Mayo Clinic from 1994 to 2005[J]. JACC Cardiovasc Interv, 2008, 1(2): 202-209.
[9]
Metz D, Meyer P, Touati C, et al. Comparison of 6F with 7F and 8F guiding catheters for elective coronary angioplasty: results of a prospective, multicenter, randomized trial[J]. Am Heart J, 1997, 134(1): 131-137.
[10]
Sherev DA, Shaw RE, Brent BN. Angiographic predictors of femoral access site complications: implication for planned percutaneous coronary intervention[J]. Catheter Cardiovasc Interv, 2005, 65(2): 196-202.
[11]
Haussen DC, Nogueira RG, DeSousa KG, et al. Transradial access in acute ischemic stroke intervention[J]. J Neurointerv Surg, 2016, 8(3): 247-250.
[12]
Garrett PD, Eckart RE, Bauch TD, et al. Fluoroscopic localization of the femoral head as a landmark for common femoral artery cannulation[J]. Catheter Cardiovasc Interv, 2005, 65(2): 205-207.
[13]
Jacobi JA, Schussler JM, Johnson KB. Routine femoral head fluoroscopy to reduce complications in coronary catheterization[J]. Proc (Bayl Univ Med Cent), 2009, 22(1): 7-8.
[14]
Fitts J, Ver Lee P, Hofmaster P, et al. Fluoroscopy-guided femoral artery puncture reduces the risk of PCI-related vascular complications[J]. J Interv Cardiol, 2008, 21(3): 273-278.
[15]
Abu-Fadel MS, Sparling JM, Zacharias SJ, et al. Fluoroscopy vs. traditional guided femoral arterial access and the use of closure devices: a randomized controlled trial[J]. Catheter Cardiovasc Interv, 2009, 74(4): 533-539.
[16]
Seto AH, Abu-Fadel MS, Sparling JM, et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (femoral arterial access with ultrasound trial)[J]. JACC Cardiovasc Interv, 2010, 3(7): 751-758.
[17]
Patel MR, Jneid H, Derdeyn CP, et al. Arteriotomy closure devices for cardiovascular procedures: a scientifc statement from the American Heart Association[J]. Circulation, 2010, 122(18): 1882-1893.
[18]
Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within8 hours after symptom onset in ischemic stroke[J]. N Engl J Med, 2015, 372(24): 2296-2306.
[19]
Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke[J]. N Engl J Med, 2015, 372(11): 1019-1030.
[20]
Campbell BCV, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection[J]. N Engl J Med, 2015, 372(11): 1009-1018.
[21]
Snelling BM, Sur S, Shah SS, et al. Transradial cerebral angiography: techniques and outcomes[J]. J Neurointerv Surg, 2018, 10(9): 874-881.
[22]
Park J-H, Kim D-Y, Kim J-W, et al. Effcacy of transradial cerebral angiography in the elderly[J]. J Korean Neurosurg Soc, 2013, 53(4): 213-217.
[23]
Nohara AM, Kallmes DF. Transradial cerebral angiography: technique and outcomes[J]. AJNR Am J Neuroradiol, 2003, 24(6): 1247-1250.
[24]
Nagayoshi K, Ikeda M, Hirai N, et al. Usefulness of selective cerebral angiography by transradial approach[J]. Nihon Igaku Hoshasen Gakkai Zasshi, 2000, 60(1): 28-32.
[25]
Matsumoto Y, Hongo K, Toriyama T, et al. Transradial approach for diagnostic selective cerebral angiography: results ofa consecutive series of 166 cases[J]. AJNR Am J Neuroradiol, 2001, 22(4): 704-708.
[26]
Levy EI, Boulos AS, Fessler RD, et al. Transradial cerebral angiography: an alternative route[J]. Neurosurgery, 2002, 51(2): 335-342.
[27]
Jo KW, Park SM, Kim SD, et al. Is transradial cerebral angiography feasible and safe? A single center's experience[J].J Korean Neurosurg Soc, 2010, 47(5): 332-337.
[28]
Sur S, Snelling B, Khandelwal P, et al. Transradial approach for mechanical thrombectomy in anterior circulation large-vessel occlusion[J]. Neurosurg Focus, 2017, 42(4): E13.
[29]
Schönholz C, Nanda A, Rodríguez J, et al. Transradial approach to coil embolization of an intracranial aneurysm[J]. J Endovasc Ther, 2004, 11(4): 411-413.
[30]
Ruzsa Z, Nemes B, Pintér L, et al. A randomised comparison of transradial and transfemoral approach for carotid artery stenting: RADCAR (radial access for carotid artery stenting) study[J]. EuroIntervention, 2014, 10(3): 381-391.
[31]
Peitz GW, Kura B, Johnson JN, et al. Transradial approach for deployment of a flow diverter for an intracranial aneurysm ina patient with a type-3 aortic arch[J]. J Vasc Interv Neurol, 2017, 9(5): 42-44.
[32]
Mendiz OA, Sampaolesi AH, Londero HF, et al. Initial experience with transradial access for carotid artery stenting[J]. Vasc Endovascular Surg, 2011, 45(5): 499-503.
[33]
Goland J, Doroszuk G, Garbugino S, et al. Transradial approach to treating endovascular cerebral aneurysms: case series and technical note[J]. Surg Neurol Int, 2017, 8: 73.
[34]
Dietrich C, Hauck GH, Valvassori L, et al. Transradial access or Simmons shaped 8F guide enables delivery of flow diverters in patients with large intracranial aneurysms and type III aortic arch: technical case report[J]. Neurosurgery, 2013, 73 (1 Suppl Operative): onsE111-115.
[35]
Daou B, Chalouhi N, Tjoumakaris S, et al. Alternative access for endovascular treatment of cerebrovascular diseases[J]. Clin Neurol Neurosurg, 2016, 145: 89-95.
[36]
Snelling BM, Sur S, Shah SS, et al. Transradial access: lessons learned from cardiology[J]. J Neurointerv Surg, 2018, 10(5):487-492.
[37]
Valgimigli M, Campo G, Penzo C, et al. Transradial coronary catheterization and intervention across the whole spectrum of Allen test results[J]. J Am Coll Cardiol, 2014, 63(18): 1833-1841.
[38]
Barbeau GR, Arsenault F, Dugas L, et al. Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: comparison with the Allen's test in 1010 patients[J]. Am Heart J, 2004, 147(3): 489-493.
[39]
Bertrand OF, Carey PC, Gilchrist IC. Allen or no Allen: that is the question![J] J Am Coll Cardiol, 2014, 63(18): 1842-1844.
[40]
Valgimigli M, Frigoli E, Leonardi S, et al. Radial versus femoral access and bivalirudin versus unfractionated heparin in invasively managed patients with acute coronary syndrome (matrix): fnal 1-year results of a multicentre, randomised controlled trial[J]. Lancet, 2018, 392(10150): 835-848.
[41]
Beyer AT, Ng R, Singh A, et al. Topical nitroglycerin and lidocaine to dilate the radial artery prior to transradial cardiac catheterization: a randomized, placebo-controlled, double-blind clinical trial[J]. Int J Cardiol, 2013, 168(3): 2575-2578.
[42]
Ezhumalai B, Satheesh S, Jayaraman B. Effects of subcutaneously infltrated nitroglycerin on diameter, palpability, ease-of-puncture and pre-cannulation spasm of radial artery during transradial coronary angiography[J]. Indian Heart J, 2014, 66(6): 593-597.
[43]
Candemir B, Kumbasar D, Turhan S, et al. Facilitation of radial artery cannulation by periradial subcutaneous administration of nitroglycerin[J]. J Vasc Interv Radiol, 2009, 20(9): 1151-1156.
[44]
Seto AH, Roberts JS, Abu-Fadel MS, et al. Real-time ultrasound guidance facilitates transradial access: RAUST (radial artery access with ultrasound trial)[J]. JACC Cardiovasc Interv, 2015, 8(2): 283-291.
[45]
Pancholy SB, Sanghvi KA, Patel TM. Radial artery access technique evaluation trial: randomized comparison of Seldinger versus modifed Seldinger technique for arterial access for transradial catheterization[J]. Catheter Cardiovasc Interv, 2012, 80(2): 288-291.
[46]
McCarthy DJ, Chen SH, Brunet M-C, et al. Distal radial artery access in the anatomical snuffbox for neurointerventions: case report[J]. World Neurosurg, 2019, 122: 355-359.
[47]
Brunet M-C, Chen SH, Sur S, et al. Distal transradial access in the anatomical snuffbox for diagnostic cerebral angiography[J].J Neurointerv Surg, 2019, 11(7): 710-713.
[48]
Spaulding C, Lefèvre T, Funck F, et al. Left radial approach for coronary angiography: results of a prospective study[J]. Cathet Cardiovasc Diagn, 1996, 39(4): 365-70.
[49]
Dahal K, Sharma S, Yousuf A, et al. A comparison of standard versus low dose heparin on access-related complications after coronary angiography through radial access: a meta-analysis of randomized controlled trials[J]. Cardiovasc Revasc Med, 2018, 19(5 Pt B): 575-579.
[50]
Hahalis GN, Leopoulou M, Tsigkas G, et al. Multicenter randomized evaluation of high versus standard heparin dose on incident radial arterial occlusion after transradial coronary angiography: the spirit of ARTEMIS study[J]. JACC Cardiovasc Interv, 2018, 11(22): 2241-2250.
[51]
Pancholy SB. Comparison of the effect of intra-arterial versus intravenous heparin on radial artery occlusion after transradial catheterization[J]. Am J Cardiol, 2009, 104(8): 1083-1085.
[52]
Rosencher J, Chaïb A, Barbou F, et al. How to limit radial artery spasm during percutaneous coronary interventions: the spasmolytic agents to avoid spasm during transradial percutaneous coronary interventions (SPASM3) study[J]. Catheter Cardiovasc Interv, 2014, 84(5): 766-771.
[53]
Kiemeneij F, Vajifdar BU, Eccleshall SC, et al. Evaluation ofa spasmolytic cocktail to prevent radial artery spasm during coronary procedures[J]. Catheter Cardiovasc Interv, 2003, 58(3): 281-284.
[54]
Chen C-W, Lin C-L, Lin T-K, et al. A simple and effective regimen for prevention of radial artery spasm during coronary catheterization[J]. Cardiology, 2006, 105(1): 43-47.
[55]
Kwok CS, Rashid M, Fraser D, et al. Intra-arterial vasodilators to prevent radial artery spasm: a systematic review and pooled analysis of clinical studies[J]. Cardiovasc Revasc Med, 2015, 16(8): 484-490.
[56]
Horie K, Tada N, Isawa T, et al. A randomised comparison of incidence of radial artery occlusion and symptomatic radial artery spasm associated with elective transradial coronary intervention using 6.5 Fr SheathLess Eaucath guiding catheter vs. 6.0 Fr Glidesheath slender[J]. EuroIntervention, 2018, 13(17): 2018-2025.
[57]
Pancholy SB, Bernat I, Bertrand OF, et al. Prevention of radial artery occlusion after transradial catheterization: the PROPHET-II randomized trial[J]. JACC Cardiovasc Interv, 2016, 9(19): 1992-1999.
[58]
Dangoisse V, Guédès A, Chenu P, et al. Usefulness of a gentle and short hemostasis using the transradial band device after transradial access for percutaneous coronary angiography and interventions to reduce the radial artery occlusion rate (from the prospective and randomized CRASOC I, II, and III studies)[J]. Am J Cardiol, 2017, 120(3): 374-379.
[59]
Caputo RP, Tremmel JA, Rao S, et al. Transradial arterial access for coronary and peripheral procedures: Executive summary by the Transradial Committee of the ScaI[J]. Catheter Cardiovasc Interv, 2011, 78(6): 823-839.
[60]
Bernat I, Bertrand OF, Rokyta R, et al. Effcacy and safety of transient ulnar artery compression to recanalize acute radial artery occlusion after transradial catheterization[J]. Am J Cardiol, 2011, 107(11): 1698-1701.
[61]
Zaidat OO, Szeder V, Alexander MJ. Transbrachial stent-assisted coil embolization of right posterior inferior cerebellar artery aneurysm: technical case report[J]. J Neuroimaging, 2007, 17(4): 344-347.
[62]
Okawa M, Tateshima S, Liebeskind D, et al. Successful recanalization for acute ischemic stroke via the transbrachial approach[J]. J Neurointerv Surg, 2016, 8(2): 122-125.
[63]
Kawajiri K, Matsuoka Y, Hayazaki K, et al. Utility of selective cerebral angiography through the transbrachial route[J]. No Shinkei Geka, 1994, 22(3): 235-239.
[64]
Iwata T, Mori T, Tajiri H, et al. Initial experience of a novel sheath guide for transbrachial coil embolization of cerebral aneurysms in the anterior cerebral circulation[J]. Neurosurgery, 2013, 72(1 Suppl Operative): 15-19.
[65]
Horton TG, Kalapos P, Cockroft KM. Brachial artery approach for endovascular treatment of posterior circulation intracranial vascular disease: technique and application in 5 cases[J]. J Stroke Cerebrovasc Dis, 2012, 21(1): 68-74.
[66]
Dorfer C, Standhardt H, Gruber A, et al. Direct percutaneous puncture approach versus surgical cutdown technique for intracranial neuroendovascular procedures:technical aspects[J]. World Neurosurg, 2012, 77(1): 192-200.
[67]
Alvarez-Tostado JA, Moise MA, Bena JF, et al. The brachial artery: a critical access for endovascular procedures[J]. J Vasc Surg, 2009, 49(2): 378-385.
[68]
Puggioni A, Boesmans E, Deloose K, et al. Use of starclose for brachial artery closure after percutaneous endovascular interventions[J]. Vascular, 2008, 16(2): 85-90.
[69]
Hertting K, Raut W. Successful use of the mynxgrip closure device during repeated transbrachial percutaneous peripheral intervention[J]. Case Rep Vasc Med, 2015, 2015: 1-4.
[70]
Belenky A, Aranovich D, Greif F, et al. Use of a collagen-based device for closure of low brachial artery punctures[J]. Cardiovasc Intervent Radiol, 2007, 30(2): 273-275.
[71]
Lupattelli T, Clerissi J, Clerici G, et al. The effcacy and safety of closure of brachial access using the AngioSeal closure device: experience with 161 interventions in diabetic patients with critical limb ischemia[J]. J Vasc Surg, 2008, 47(4): 782-788.
[72]
Treitl KM, König C, Reiser MF, et al. Complications of transbrachial arterial access for peripheral endovascular interventions[J]. J Endovasc Ther, 2015, 22(1): 63-70.
[73]
Kiemeneij F, Laarman GJ, Odekerken D, et al. A randomized comparison of percutaneous transluminal coronary angioplasty by the radial, brachial and femoral approaches: the access study[J].J Am Coll Cardiol, 1997, 29(6): 1269-1275.
[74]
Calsina Juscafresa L, Llort Pont C, Clará Velasco A. CUSUM analysis of brachial artery access for peripheral endovascular interventions[J]. Int Angiol, 2014, 33(5): 441-445.
[75]
Roche A, Griffn E, Looby S, et al. Direct carotid puncture for endovascular thrombectomy in acute ischemic stroke[J].J Neurointerv Surg, 2019, 11(7): 647-652.
[76]
Jadhav AP, Ribo M, Grandhi R, et al. Transcervical access in acute ischemic stroke[J]. J Neurointerv Surg, 2014, 6(9): 652-657.
[77]
Castaño C, Remollo S, García MR, et al. Mechanical thrombectomy with 'ADAPT' technique by transcervical access in acute ischemic stroke[J]. Neuroradiol J, 2015, 28(6): 617-622.
[78]
Yu SCH, Cheng HKM, Wong GKC, et al. Transvenous embolization of dural carotidcavernous fstulae with transfacial catheterization through the superior ophthalmic vein[J]. Neurosurgery, 2007, 60(6): 1032-1037.
[79]
Orlov K, Gorbatykh A, Berestov V, et al. Superselective transvenous embolization with Onyx and n-BCA for vein of Galen aneurysmal malformations with restricted transarterial access: safety, effcacy, and technical aspects[J]. Child's Nervous System, 2017, 33(11): 2003-2010.
[80]
Molitch ME. Diagnosis and treatment of pituitary adenomas[J]. JAMA, 2017, 317(5): 516-524.
[81]
Lee DJ, Ahmadpour A, Binyamin T, et al. Management and outcome of spontaneous cerebral venous sinus thrombosis ina 5-year consecutive single-institution cohort[J]. J Neurointerv Surg, 2017, 9(1): 34-38.
[82]
Klisch J, Huppertz HJ, Spetzger U, et al. Transvenous treatment of carotid cavernous and dural arteriovenous fstulae: results for 31 patients and review of the literature[J]. Neurosurgery, 2003, 53(4): 836-857.
[83]
Hui FK, Abruzzo T, Ansari SA. Endovascular interventions for idiopathic intracranial hypertension and venous tinnitus[J]. Neuroimaging Clin N Am, 2016, 26(2): 289-299.
[84]
Houdart E, Saint-maurice J-P, Chapot R, et al. Transcranial approach for venous embolization of dural arteriovenous fstulas[J]. J Neurosurg, 2002, 97(2): 280-286.
[85]
Gemmete JJ, Chaudhary N, Pandey A, et al. Treatment of carotid cavernous fstulas[J].Curr Treat Options Neurol, 2010, 12(1): 43-53.
[86]
Gandhi CD, Meyer SA, Patel AB, et al. Neurologic complications of inferior petrosal sinus sampling[J]. AJNR Am J Neuroradiol, 2008, 29(4): 760-765.
[87]
Berenstein A, Masters LT, Nelson PK, et al. Transumbilical catheterization of cerebral arteries[J]. Neurosurgery, 1997, 41(4): 846-850.
[88]
Harrigan MR, Deveikis JP. Handbook of cerebrovascular disease and neurointerventional technique[M]. Totowa, NJ: Humana Press, Imprint, 2013.
[89]
Deipolyi A, Bailin A, Hirsch JA, et al. Bilateral inferior petrosal sinus sampling:experience in 327 patients[J]. J Neurointerv Surg, 2017, 9(2): 196-199.
[90]
Wolfe SQ, Cumberbatch NMA, Aziz-Sultan MA, et al. Operative approach via the superior ophthalmic vein for the endovascular treatment of carotid cavernous fstulas that fail traditional endovascular access[J]. Neurosurgery, 2010, 66(6 Suppl Operative): 293-299.
[91]
Wenderoth J. Novel approaches to access and treatment of cavernous sinus dural arteriovenous fstula (CS-DAVF): case series and review of the literature[J]. J Neurointerv Surg, 2017, 9(3): 290-296.
[92]
Chen C-J, Mastorakos P, Caruso JP, et al. Transorbital approach for endovascular occlusion of carotid-cavernous fstulas: technical note and review of the literature[J]. Cureus, 2017, 9(1): e976.
[93]
Taylor LM, Troutman R, Feliciano P, et al. Late complications after femoral artery catheterization in children less than fve years of age[J]. J Vasc Surg, 1990, 11(2): 297-306.
[94]
Glatz AC, Shah SS, McCarthy AL, et al. Prevalence of and risk factors for acute occlusive arterial injury following pediatric cardiac catheterization: a large singlecenter cohort study[J]. Catheter Cardiovasc Interv, 2013, 82(3): 454-462.
[95]
Franken EA, Girod D, Sequeira FW, et al. Femoral artery spasm in children: catheter size is the principal cause[J]. Am J Roentgenol, 1982, 138(2): 295-298.
[96]
Flanigan DP, Keifer TJ, Schuler JJ, et al. Experience with iatrogenic pediatric vascular injuries. incidence, etiology, management, and results[J]. Ann Surg, 1983, 198(4): 430-442.
[97]
Alexander J, Yohannan T, Abutineh I, et al. Ultrasound-guided femoral arterial access in pediatric cardiac catheterizations: a prospective evaluation of the prevalence, risk factors, and mechanism for acute loss of arterial pulse[J]. Cathet Cardiovasc Intervent, 2016, 88(7): 1098-1107.
[98]
Kim DW, Raviele AA, Vincent RN. Use of a 3 French system for balloon aortic valvuloplasty in infants[J]. Catheter Cardiovasc Interv, 2005, 66(2): 254-257.
[99]
Gross BA, Orbach DB. Addressing challenges in 4 F and 5 F arterial access for neurointerventional procedures in infants and young children[J]. J Neurointerv Surg, 2014, 6(4): 308-313.
[100]
Ligon RA, Kim DW, Vincent RN, et al. Angiographic follow-up of infants and children undergoing percutaneous carotid artery interventions[J]. Catheter Cardiovasc Interv, 2018, 91(7): 1301-1306.
[101]
Burrows PF, Robertson RL, Barnes PD. Angiography and the evaluation of cerebrovascular disease in childhood[J]. Neuroimaging Clin N Am, 1996, 6(3): 561-588.
[102]
Mansfeld PB, Gazzaniga AB, Litwin SB. Management of arterial injuries related to cardiac catheterization in children and young adults[J]. Circulation, 1970, 42(3): 501-507.
[103]
Sandgren T, Sonesson B, Ahlgren R, et al. The diameter of the common femoral artery in healthy human: influence of sex, age, and body size[J]. J Vasc Surg, 1999, 29(3): 503-510.
[104]
He L, Ladner TR, Pruthi S, et al. Rule of 5: angiographic diameters of cervicocerebral arteries in children and compatibility with adult neurointerventional devices[J]. J Neurointerv Surg, 2016, 8(10): 1067-1071.
[105]
Sahn DJ, Goldberg SJ, Allen HD, et al. A new technique for noninvasive evaluation of femoral arterial and venous anatomy before and after percutaneous cardiac catheterization in children and infants[J]. Am J Cardiol, 1982, 49(2): 349-355.
[106]
Shokuhfar T, Hurley MC, Al-Smadi A, et al. MynxGrip vascular closure device use in pediatric neurointerventional procedures[J]. J Neurosurg Pediatr, 2018, 21(5): 466-470.
[107]
Prabhu SJ, Padia SA, Valji K, et al. Arterial closure device to achieve hemostasis in children following percutaneous femoral arterial puncture[J]. Pediatr Radiol, 2013, 43(6): 703-708.
[108]
Wessel DL, Keane JF, Fellows KE, et al. Fibrinolytic therapy for femoral arterial thrombosis after cardiac catheterization in infants and children[J]. Am J Cardiol, 1986, 58(3): 347-351.
[109]
Peuster M, Bertram H, Fink C, et al. Percutaneous transluminal angioplasty for the treatment of complete arterial occlusion after retrograde cardiac catheterization in infancy[J]. Am J Cardiol, 1999, 84(9): 1124-1126.
[110]
Lin PH, Dodson TF, Bush RL, et al. Surgical intervention for complications caused by femoral artery catheterization in pediatric patients[J]. J Vasc Surg, 2001, 34(6): 1071-1078.
[111]
Kothari SS, Kumar RK, Varma S, et al. Thrombolytic therapy in infants for femoral artery thrombosis following cardiac catheterisation[J]. Indian Heart J, 1996, 48(3): 246-248.
[112]
Gupta AA, Leaker M, Andrew M, et al. Safety and outcomes of thrombolysis with tissue plasminogen activator for treatment of intravascular thrombosis in children[J]. J Pediatr, 2001, 139(5): 682-688.
[113]
Aspalter M, Domenig CM, Haumer M, et al. Management of iatrogenic common femoral artery injuries in pediatric patients using primary vein patch angioplasty[J]. J Pediatr Surg, 2007, 42(11): 1898-1902.
[114]
Sadat U, Hayes PD, Varty K. Acute limb ischemia in pediatric population secondary to peripheral vascular cannulation: literature review and recommendations[J]. Vasc Endovascular Surg, 2015, 49(5-6): 142-147.
[1] 中华医学会骨科分会关节外科学组, 中国医师协会运动医学医师分会, 海军军医大学附属长海医院. 中轴型脊柱关节炎诊断和治疗专家共识(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(02): 151-160.
[2] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[3] 黄跃生. 努力建设高水平创面修复新学科[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 185-187.
[4] 中国老年医学学会烧创伤分会. 老年患者皮肤撕裂伤防护专家共识(2022版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 98-103.
[5] 唐甜甜, 马力. 中华医学会乳腺癌患者中心静脉血管通路临床实践指南解读[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 240-244.
[6] 倪鑫淼, 王磊, 王潇, 陈志远, 翁小东, 刘修恒. 前列腺癌患者骨保护现状及临床用药进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 191-195.
[7] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[8] 中国研究型医院学会微创外科学专业委员会. 日间腹腔镜胆囊切除术专家共识[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 193-199.
[9] 崔转云, 吕丽萍, 常栋. 彩色多普勒超声引导在慢性肾功能衰竭患者建立血液透析血管通路中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 205-209.
[10] 静脉淋巴功能不全临床专家共识编写组. 静脉淋巴功能不全临床专家共识[J]. 中华临床医师杂志(电子版), 2023, 17(06): 630-638.
[11] 许少睿, 孔杰, 马骏, 尚金林, 苏浩波. 西门子Artis Zee系列神经介入术专属透视策略的创建与应用[J]. 中华介入放射学电子杂志, 2023, 11(04): 318-323.
[12] 杨旭希, 郑吉洋, 陈秀梅, 陈淑玲, 杨峻青, 苏芝琪, 左咏臻, 广东省医师协会心力衰竭专业医师分会, 广东省护士协会介入护士分会. 慢性心力衰竭患者容量管理护理专家共识[J]. 中华介入放射学电子杂志, 2023, 11(03): 201-207.
[13] 中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会. 普通心脏起搏器和植入型心律转复除颤器手术操作规范中国专家共识(2023)[J]. 中华心脏与心律电子杂志, 2023, 11(02): 65-102.
[14] 中华医学会消化内镜学分会护理协作组. 消化内镜中心的环境与布局专家共识建议(2023年,北京)[J]. 中华胃肠内镜电子杂志, 2023, 10(04): 240-247.
[15] 中华医学会消化内镜学分会. 中国经口胆胰管镜超级微创诊疗技术共识意见(2023年,北京)[J]. 中华胃肠内镜电子杂志, 2023, 10(04): 217-239.
阅读次数
全文


摘要