1 |
Torre LA, Bray F, Siegel RL, et al. Global Cancer Statistics, 2012[J]. CA Cancer J Clin, 2015,65(2):87-108. doi: 10.3322/caac.21262.
|
2 |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132. doi: 10.3322/caac.21338.
|
3 |
|
4 |
Wagstaff KM, Jans DA. Nuclear drug delivery to target tumour cells[J]. Eur J Pharmacol, 2009, 625(1-3):174-80. doi: 10.1016/j.ejphar.2009.06.069.
|
5 |
|
6 |
Petrelli F, Comito T, Ghidini A, et al. Stereotactic body radiation therapy for locally advanced pancreatic cancer: a systematic review and pooled analysis of 19 trials[J]. Int JRadiat Oncol Biol Phys, 2017,97(2):313-322. doi: 10.1016/j.ijrobp.2016.10.030.
|
7 |
Zan G, Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures[J]. Adv Mater, 2016,28(11):2099-2147. doi: 10.1002/adma.201503215.
|
8 |
Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms[J]. Curr Mol Med, 2006,6(6):651-663. doi: 10.2174/156652406778195026.
|
9 |
Araújo F, Shrestha N, Granja PL, et al. Safety and toxicity concerns of or allydelivered nanoparticles as drug carriers[J]. Expert Opin Drug Metab Toxicol, 2015 ,11(3):381-393. doi: 10.1517/17425255.2015.992781.
|
10 |
Mocan L, Matea CT, Bartos D, et al. Advances in cancer research using gold nanoparticles mediated photothermal ablation[J]. Clujul Med, 2016,89(2):199-202. doi: 10.15386/cjmed-573.
|
11 |
Schuemann J, Berbeco R, Chithrani DB. Roadmap to clinical use of gold nanoparticles for radiation sensitization[J]. Int J Radiat Oncol Biol Phys, 2016, 94(1):189-205. doi: 10.1016/j.ijrobp.2015.09.032.
|
12 |
Jiang S, Win KY, Liu S, et al. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics[J]. Nanoscale, 2013, 5(8):3127-3148. doi: 10.1039/c3nr34005h.
|
13 |
Rana S, Bajaj A, Mout R, et al.Monolayer coated gold nanoparticles for delivery applications[J]. Advanc Drug Deliv Rev, 2012,64(2):200-216. doi: 10.1016/j.addr.2011.08.006.
|
14 |
Hubbell JH, Selt SM. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional substances of Dosimetric Interest[DB/OL].[2015-12-16].
URL
|
15 |
江黎. 纳米金颗粒局域表面等离子共振特性应用于光学生物传感及成像[D]. 浙江大学, 2013.
|
16 |
Zhang G, Yang Z, Lu W, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice[J]. Biomaterials, 2009, 30(10):1928-1936. doi: 10.1016/j.biomaterials.2008.12.038.
|
17 |
Bartczak D, Muskens OL, Sanchez-Elsner T, et al. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles[J]. ACS Nano, 2013, 7(6):5628-5636. doi: 10.1021/nn402111z.
|
18 |
Wang Y, Xu J, Xia X, et al. SV119-gold nanocage conjugates: a new platform for targeting cancer cells via sigma-2 receptors[J]. Nanoscale, 2012, 4(2):421-424. doi: 10.1039/c1nr11469g.
|
19 |
Zhao N, You J, Zeng Z, et al. An ultra pH-sensitive and aptamer-equipped nanoscaledrug-delivery system for selective killing of tumor cells[J].Small, 2013 , 9(20):3477-3484. doi: 10.1002/smll.201202694.
|
20 |
Juvé V, Cardinal MF, Lombardi A, et al. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods[J]. Nano Lett, 2013, 13(5):2234-2240. doi: 10.1021/nl400777y.
|
21 |
Silva CO, Rijo P, Molpeceres J, et al. Bioproduction of gold nanoparticles for photothermal therapy[J]. Ther Deliv, 2016, 7(5):287-304. doi: 10.4155/tde-2015-0011.
|
22 |
Mocan L, Matea C, Tabaran FA, et al. Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles[J]. Biomaterials, 2017, 119(1):33-42. doi: 10.1016/j.biomaterials.2016.12.009.
|
23 |
Guo R, Wang H, Peng C, et al. X-ray attenuation property of dendrimer-entrapped gold nanoparticles[J]. J Physical Chemistry C, 2010,114(1):50-56. doi: 10.1021/jp9078986.
|
24 |
Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles: a new X-ray contrastagent[J]. Br J Radiol, 2006, 79(939):248-253. doi: 10.1259/bjr/13169882.
|
25 |
Ahn S, Jung SY, Lee SJ. Gold nanoparticle contrast agents in advanced X-ray imaging technologies[J]. Molecules, 2013, 18(5):5858-5890. doi: 10.3390/molecules18055858.
|
26 |
You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano, 2010, 4(2):1033-1041. doi: 10.1021/nn901181c.
|
27 |
Yavuz MS, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light[J]. Nat Mater, 2009, 8(12):935-939. doi: 10.1038/nmat2564.
|
28 |
Gu YJ, Cheng J, Man CW, et al. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance [J]. Nanomedicine, 2012, 8(2):204-211. doi: 10.1016/j.nano.2011.06.005.
|
29 |
Mahmood M, Casciano DA, Mocan T, et al. Cytotoxicity and biological effects of functional nanomaterials delivered to variouscell lines[J]. J Appl Toxicol, 2010,30(1):74-83. doi: 10.1002/jat.1475.
|
30 |
Dreaden EC, Gryder BE, Austin LA, et al. Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells[J]. Bioconjug Chem, 2012,23(8):1507-1512. doi: 10.1021/bc300158k.
|
31 |
Chauhan G, Chopra V, Tyagi A, et al. "Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids" for targeted chemo-thermal cancer ablation: In vitro screening and in vivo studies[J]. Eur J Pharm Sci, 2017, 96:351-361. doi: 10.1016/j.ejps.2016.10.011.
|
32 |
Li J, Zhou M, Liu F, et al. Hepatocellular carcinoma: intra-arterial delivery of doxorubicin-loaded hollow gold nanospheres for photothermal ablation-chemoembolization therapy in rats[J]. Radiology, 2016, 281(2):427-435. doi: 10.1148/radiol.2016152510.
|
33 |
Abdoon AS, Al-Ashkar EA, Kandil OM, et al. Efficacy and toxicity of plasmonic photothermal therapy (PPTT) using gold nanorods (GNRs) against mammary tumors in dogs and cats[J]. Nanomedicine, 2016 , 12(8):2291-2297. doi: 10.1016/j.nano.2016.07.005.
|
34 |
Yang RM, Fu CP, Fang JZ, et al. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermaltherapy[J].Int J Nanomedicine, 2016, 12:197-206. doi: 10.2147/IJN.S121249.
|
35 |
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci USA, 2003,100(23):13549-13554. doi: 10.1073/pnas.2232479100.
|
36 |
Inada N, Asakawa H, Kobayashi T, et al. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer[J]. Beilstein J Nanotechnol, 2016, 7:409-417. doi: 10.3762/bjnano.7.36.
|
37 |
Dodd GD 3rd, Frank MS, Aribandi M, et al. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations[J]. AJR Am J Roentgenol, 2001, 177(4):777-782. doi: 10.2214/ajr.177.4.1770777.
|
38 |
Lu W, Zhang G, Zhang R, et al. Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection[J]. Cancer Res, 2010, 70(8):3177-3188. doi: 10.1158/0008-5472.CAN-09-3379.
|
39 |
Melancon MP, Lu W, Yang Z, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy[J]. Mol Cancer Ther, 2008, 7(6):1730-1739. doi: 10.1158/1535-7163.MCT-08-0016.
|
40 |
Zhang G, Yang Z, Lu W, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice[J]. Biomaterials, 2009, 30(10):1928-1936. doi: 10.1016/j.biomaterials.2008.12.038.
|
41 |
Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment[J]. Proc Natl Acad Sci USA, 1998, 95(8):4607-4612. doi: 10.1073/pnas.95.8.4607.
|
42 |
Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size[J]. Cancer Res, 1995, 55(17):3752-3756.
|
43 |
Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano Lett, 2005, 5(4):709-711. doi: 10.1021/nl050127s.
|
44 |
Collins CB, McCoy RS, Ackerson BJ, et al. Radiofrequency heating pathways for gold nanoparticles[J]. Nanoscale, 2014, 6(15):8459-8472. doi: 10.1039/c4nr00464g.
|
45 |
Raoof M, Corr SJ, Kaluarachchi WD,et al. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy[J]. Nanomedicine, 2012, 8(7):1096-1105. doi: 10.1016/j.nano.2012.02.001.
|
46 |
SPIERS FW. The influence of energy absorption and electron range on dosage in irradiated bone[J]. Br J Radiol, 1949,22(261):521-533.doi: 10.1259/0007-1285-22-261-521.
|
47 |
Herold DM, Das IJ, Stobbe CC, et al. Gold microspheres:a selective technique for producing biologically effective dose enhancement[J]. Int J Radiat Biol, 2000,76(10):1357-1364. doi: 10.1080/09553000050151637.
|
48 |
Castillo MH, Button TM, Doerr R, et al. Effects of radiotherapy on mandibular reconstruction plates[J]. Am J Surg, 1988,156(4):261-263. doi: 10.1016/S0002-9610(88)80287-3.
|
49 |
Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: apreliminary Monte Carlo study[J]. Phys Med Biol, 2005,50(15):N163-173. doi: 10.1088/0031-9155/50/15/N01.
|
50 |
Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticlesenhance radio-cytotoxic targeting of ovarian cancer[J]. Nanotechnology, 2011,22(28):285101. doi: 10.1088/0957-4484/22/28/285101.
|
51 |
Hainfeld JF, Dilmanian FA, Zhong Z, et al. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma[J]. Phys Med Biol, 2010,55(11): 3045-3059. doi: 10.1088/0031-9155/55/11/004.
|
52 |
Chattopadhyay N, Cai Z, Kwon YL, et al. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation[J]. Breast Cancer Res Treat, 2013,137(1):81-91. doi: 10.1007/s10549-012-2338-4.
|
53 |
Chang MY, Shiau AL, Chen YH, et al. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice[J]. Cancer Sci, 2008,99(7):1479-1484. doi: 10.1111/j.1349-7006.2008.00827.x.
|
54 |
Hainfeld JF, Smilowitz HM, O’Connor MJ, et al. Gold nanoparticle imaging and radiotherapy of brain tumors in mice[J]. Nanomedicine (Lond), 2013,8(10): 1601-1609. doi: 10.2217/nnm.12.165.
|
55 |
McMahon SJ, Prise KM, Currell FJ. Comment on 'implications on clinical scenario of gold nanoparticle radiosensitization in regard to photon energy, nanoparticle size, concentration and location’[J]. Phys Med Biol, 2012, 57(1):287-290. doi: 10.1088/0031-9155/57/1/287.
|
56 |
Jean-Philippe P, Eli L. Reply to comment on 'implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location’[J]. Phys Med Biol, 2012, 57(1):291-295. doi: 10.1088/0031-9155/57/1/291.
|
57 |
Mu CJ, La Van DA, Langer RS, et al. Self-assembled goldnanoparticle molecular probes for detecting proteolytic activity in vivo[J]. ACS Nano, 2010,4(3):1511-1520. doi: 10.1021/nn9017334.
|
58 |
Lu W, Huang Q, Ku G, et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres[J]. Biomaterials, 2010, 31(9):2617-2626. doi: 10.1016/j.biomaterials.2009.12.007.
|
59 |
Lu W, Melancon MP, Xiong C, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma[J]. Cancer Res, 2011, 71(19):6116-6121. doi: 10.1158/0008-5472.CAN-10-4557.
|
60 |
Huang P, Rong P, Jin A,et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy[J]. Adv Mater, 2014, 26(37):6401-6408. doi: 10.1002/adma.201400914.
|
61 |
Gao F, Bai L, Liu S,et al. Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo[J].Nanoscale, 2017, 9(1):79-86. doi: 10.1039/c6nr07528b.
|
62 |
Bassi B, Taglietti A, Galinetto P,et al. Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging[J]. Nanotechnology, 2016, 27(26):265302. doi: 10.1088/0957-4484/27/26/265302.
|
63 |
McVeigh PZ, Mallia RJ, Veilleux I, et al. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo[J]. J Biomed Opt, 2013, 18(4):046011. doi: 10.1117/1.JBO.18.4.046011.
|
64 |
Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles: a new X-ray contra stagent[J]. Br J Radiol, 2006, 79(939):248-253. doi: 10.1259/bjr/13169882.
|
65 |
Kattumuri V, Katti K, Bhaskaran S, et al. Gum Arabic as a phytoehemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray contrast-imaging studies[J]. Small, 2007,3(2):333-341. doi: 10.1002/smll.200600427.
|
66 |
Park J, Reddy PAN, Kim HK, et al. Gold nanoparticles functionalised by Gd-complex of DTPA-bis (amide) conjugate of glutathione as an MRI contrast agent[J]. Bioorg Med Chem Lett, 2008,18(23):6135-6137. doi: 10.1016/j.bmcl.2008.10.017.
|
67 |
Ahmad T, Bae H, Rhee I, et al. Gold-coated iron oxide nanoparticles as a T2 contrastagent in magnetic resonance imaging[J]. J Nanosci Nanotechnol, 2012 , 12(7):5132-5137. doi: 10.1166/jnn.2012.6368.
|
68 |
Murph SE, Jacobs S, Liu J, et al. Manganese-gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling[J]. J Nanopart Res, 2012, 14:658. doi: 10.1007/s11051-011-0658-7.
|
69 |
Chen Q, Li K, Wen S, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles[J]. Biomaterials, 2013, 34(21):5200-5209. doi: 10.1016/j.biomaterials.2013.03.009.
|
70 |
Frellsen AF, Hansen AE, Jølck RI, et al. Mouse positron emission tomography study of the biodistribution of gold nanoparticles with different surface coatings using embedded copper-64[J]. ACS Nano, 2016, 10(11):9887-9898. doi: 10.1021/acsnano.6b03144.
|
71 |
Jang B, Park S, Kang SH, et al. Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo[J]. Quant Imaging Med Surg, 2012, 2(1):1-11. doi: 10.3978/.issn.2223-4292.2012.01.03.
|
72 |
Biju V, Hamada M, Ono K, et al. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging[J]. Nanoscale, 2015 , 7(36):14829-14837. doi: 10.1039/c5nr00959f.
|
73 |
Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle[J]. Nat Med, 2012, 18(5):829-834. doi: 10.1038/nm.2721.
|
74 |
Yang M, Cheng K, Qi S, et al. Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging[J]. Biomaterials, 2013, 34(11):2796-2806. doi: 10.1016/j.biomaterials.2013.01.014.
|
75 |
Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005, 1(3):325-327. doi: 10.1002/smll.200400093.
|
76 |
Johnston HJ, Hutchison G, Christensen FM, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity[J]. Crit Rev Toxicol, 2010, 40(4): 328-346. doi: 10.3109/10408440903453074.
|
77 |
Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removalof protein-coated gold nanoparticles of different sizes and shapes[J]. Nano Lett, 2007,7(6):1542-1550. doi: 10.1021/nl070363y.
|