切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2017, Vol. 05 ›› Issue (01) : 39 -45. doi: 10.3877/cma.j.issn.2095-5782.2017.01.011

所属专题: 文献

综述

纳米金在肿瘤诊疗中的应用
陈现现1, 刘凤永1,(), 付金鑫1, 管阳1, 王茂强1   
  1. 1. 100853 解放军总医院介入放射科
  • 收稿日期:2016-12-13 出版日期:2017-02-01
  • 通信作者: 刘凤永
  • 基金资助:
    国家自然科学基金面上项目(81671800); 北京市自然科学基金面上项目(7172204)

Application of gold nanoparticles in diagnosis and treatment of tumors

Xianxian Chen1, Fengyong Liu1,(), Jinxin Fu1, Yang Guan1, Maoqiang Wang1   

  1. 1. Department of Interventional Radiology, General Hospital of PLA, Beijing 100853, China
  • Received:2016-12-13 Published:2017-02-01
  • Corresponding author: Fengyong Liu
  • About author:
    Corresponding author: Liu Fengyong, Email:
引用本文:

陈现现, 刘凤永, 付金鑫, 管阳, 王茂强. 纳米金在肿瘤诊疗中的应用[J]. 中华介入放射学电子杂志, 2017, 05(01): 39-45.

Xianxian Chen, Fengyong Liu, Jinxin Fu, Yang Guan, Maoqiang Wang. Application of gold nanoparticles in diagnosis and treatment of tumors[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2017, 05(01): 39-45.

恶性肿瘤严重威胁人类健康,传统的手术、化疗、放疗等治疗手段均存在局限性。随着纳米医学的兴起,纳米金在肿瘤诊疗中的应用成为研究的热点。本文就纳米金的理化性质、在肿瘤诊疗中的应用研究进展及纳米金的毒性方面进行综述。

Malignant tumours pose a serious threat to human health. Conventional treatments, such as surgical procedures, chemotherapy and radiotherapy, usually exist certain limitations. With the introduction of gold nanoparticles into medicine, this new technology has become a brand new research front with more and more research groups focusing on its application in diagnosis and treatment of malignant tumors. In this paper, we briefly review the physical and chemical properties of gold nanoparticles, the progress of recent research in its applications in tumor theranostics, and as well as its toxicity.

1
Torre LA, Bray F, Siegel RL, et al. Global Cancer Statistics, 2012[J]. CA Cancer J Clin, 2015,65(2):87-108. doi: 10.3322/caac.21262.
2
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132. doi: 10.3322/caac.21338.
3
陈万青,张思维,曾红梅, 等. 中国2010年恶性肿瘤发病与死亡[J]. 中国肿瘤, 2014,(1):1-10.doi:10.11735/j.issn.1004-0242.2014.01.A001.
4
Wagstaff KM, Jans DA. Nuclear drug delivery to target tumour cells[J]. Eur J Pharmacol, 2009, 625(1-3):174-80. doi: 10.1016/j.ejphar.2009.06.069.
5
王兴,孟箭,李志萍, 等. 外放疗联合个体化导板辅助125I放射性粒子植入治疗晚期头颈部鳞癌[J/CD]. 中华介入放射学电子杂志, 2016,4(3):1-4. doi: 10.3877/cma.j.issn.2095-5782.2016.03.002.
6
Petrelli F, Comito T, Ghidini A, et al. Stereotactic body radiation therapy for locally advanced pancreatic cancer: a systematic review and pooled analysis of 19 trials[J]. Int JRadiat Oncol Biol Phys, 2017,97(2):313-322. doi: 10.1016/j.ijrobp.2016.10.030.
7
Zan G, Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures[J]. Adv Mater, 2016,28(11):2099-2147. doi: 10.1002/adma.201503215.
8
Lanone S, Boczkowski J. Biomedical applications and potential health risks of nanomaterials: molecular mechanisms[J]. Curr Mol Med, 2006,6(6):651-663. doi: 10.2174/156652406778195026.
9
Araújo F, Shrestha N, Granja PL, et al. Safety and toxicity concerns of or allydelivered nanoparticles as drug carriers[J]. Expert Opin Drug Metab Toxicol, 2015 ,11(3):381-393. doi: 10.1517/17425255.2015.992781.
10
Mocan L, Matea CT, Bartos D, et al. Advances in cancer research using gold nanoparticles mediated photothermal ablation[J]. Clujul Med, 2016,89(2):199-202. doi: 10.15386/cjmed-573.
11
Schuemann J, Berbeco R, Chithrani DB. Roadmap to clinical use of gold nanoparticles for radiation sensitization[J]. Int J Radiat Oncol Biol Phys, 2016, 94(1):189-205. doi: 10.1016/j.ijrobp.2015.09.032.
12
Jiang S, Win KY, Liu S, et al. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics[J]. Nanoscale, 2013, 5(8):3127-3148. doi: 10.1039/c3nr34005h.
13
Rana S, Bajaj A, Mout R, et al.Monolayer coated gold nanoparticles for delivery applications[J]. Advanc Drug Deliv Rev, 2012,64(2):200-216. doi: 10.1016/j.addr.2011.08.006.
14
Hubbell JH, Selt SM. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional substances of Dosimetric Interest[DB/OL].[2015-12-16].

URL    
15
江黎. 纳米金颗粒局域表面等离子共振特性应用于光学生物传感及成像[D]. 浙江大学, 2013.
16
Zhang G, Yang Z, Lu W, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice[J]. Biomaterials, 2009, 30(10):1928-1936. doi: 10.1016/j.biomaterials.2008.12.038.
17
Bartczak D, Muskens OL, Sanchez-Elsner T, et al. Manipulation of in vitro angiogenesis using peptide-coated gold nanoparticles[J]. ACS Nano, 2013, 7(6):5628-5636. doi: 10.1021/nn402111z.
18
Wang Y, Xu J, Xia X, et al. SV119-gold nanocage conjugates: a new platform for targeting cancer cells via sigma-2 receptors[J]. Nanoscale, 2012, 4(2):421-424. doi: 10.1039/c1nr11469g.
19
Zhao N, You J, Zeng Z, et al. An ultra pH-sensitive and aptamer-equipped nanoscaledrug-delivery system for selective killing of tumor cells[J].Small, 2013 , 9(20):3477-3484. doi: 10.1002/smll.201202694.
20
Juvé V, Cardinal MF, Lombardi A, et al. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods[J]. Nano Lett, 2013, 13(5):2234-2240. doi: 10.1021/nl400777y.
21
Silva CO, Rijo P, Molpeceres J, et al. Bioproduction of gold nanoparticles for photothermal therapy[J]. Ther Deliv, 2016, 7(5):287-304. doi: 10.4155/tde-2015-0011.
22
Mocan L, Matea C, Tabaran FA, et al. Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles[J]. Biomaterials, 2017, 119(1):33-42. doi: 10.1016/j.biomaterials.2016.12.009.
23
Guo R, Wang H, Peng C, et al. X-ray attenuation property of dendrimer-entrapped gold nanoparticles[J]. J Physical Chemistry C, 2010,114(1):50-56. doi: 10.1021/jp9078986.
24
Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles: a new X-ray contrastagent[J]. Br J Radiol, 2006, 79(939):248-253. doi: 10.1259/bjr/13169882.
25
Ahn S, Jung SY, Lee SJ. Gold nanoparticle contrast agents in advanced X-ray imaging technologies[J]. Molecules, 2013, 18(5):5858-5890. doi: 10.3390/molecules18055858.
26
You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release[J]. ACS Nano, 2010, 4(2):1033-1041. doi: 10.1021/nn901181c.
27
Yavuz MS, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light[J]. Nat Mater, 2009, 8(12):935-939. doi: 10.1038/nmat2564.
28
Gu YJ, Cheng J, Man CW, et al. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance [J]. Nanomedicine, 2012, 8(2):204-211. doi: 10.1016/j.nano.2011.06.005.
29
Mahmood M, Casciano DA, Mocan T, et al. Cytotoxicity and biological effects of functional nanomaterials delivered to variouscell lines[J]. J Appl Toxicol, 2010,30(1):74-83. doi: 10.1002/jat.1475.
30
Dreaden EC, Gryder BE, Austin LA, et al. Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells[J]. Bioconjug Chem, 2012,23(8):1507-1512. doi: 10.1021/bc300158k.
31
Chauhan G, Chopra V, Tyagi A, et al. "Gold nanoparticles composite-folic acid conjugated graphene oxide nanohybrids" for targeted chemo-thermal cancer ablation: In vitro screening and in vivo studies[J]. Eur J Pharm Sci, 2017, 96:351-361. doi: 10.1016/j.ejps.2016.10.011.
32
Li J, Zhou M, Liu F, et al. Hepatocellular carcinoma: intra-arterial delivery of doxorubicin-loaded hollow gold nanospheres for photothermal ablation-chemoembolization therapy in rats[J]. Radiology, 2016, 281(2):427-435. doi: 10.1148/radiol.2016152510.
33
Abdoon AS, Al-Ashkar EA, Kandil OM, et al. Efficacy and toxicity of plasmonic photothermal therapy (PPTT) using gold nanorods (GNRs) against mammary tumors in dogs and cats[J]. Nanomedicine, 2016 , 12(8):2291-2297. doi: 10.1016/j.nano.2016.07.005.
34
Yang RM, Fu CP, Fang JZ, et al. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermaltherapy[J].Int J Nanomedicine, 2016, 12:197-206. doi: 10.2147/IJN.S121249.
35
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci USA, 2003,100(23):13549-13554. doi: 10.1073/pnas.2232479100.
36
Inada N, Asakawa H, Kobayashi T, et al. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer[J]. Beilstein J Nanotechnol, 2016, 7:409-417. doi: 10.3762/bjnano.7.36.
37
Dodd GD 3rd, Frank MS, Aribandi M, et al. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations[J]. AJR Am J Roentgenol, 2001, 177(4):777-782. doi: 10.2214/ajr.177.4.1770777.
38
Lu W, Zhang G, Zhang R, et al. Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection[J]. Cancer Res, 2010, 70(8):3177-3188. doi: 10.1158/0008-5472.CAN-09-3379.
39
Melancon MP, Lu W, Yang Z, et al. In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy[J]. Mol Cancer Ther, 2008, 7(6):1730-1739. doi: 10.1158/1535-7163.MCT-08-0016.
40
Zhang G, Yang Z, Lu W, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice[J]. Biomaterials, 2009, 30(10):1928-1936. doi: 10.1016/j.biomaterials.2008.12.038.
41
Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment[J]. Proc Natl Acad Sci USA, 1998, 95(8):4607-4612. doi: 10.1073/pnas.95.8.4607.
42
Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size[J]. Cancer Res, 1995, 55(17):3752-3756.
43
Loo C, Lowery A, Halas N, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy[J]. Nano Lett, 2005, 5(4):709-711. doi: 10.1021/nl050127s.
44
Collins CB, McCoy RS, Ackerson BJ, et al. Radiofrequency heating pathways for gold nanoparticles[J]. Nanoscale, 2014, 6(15):8459-8472. doi: 10.1039/c4nr00464g.
45
Raoof M, Corr SJ, Kaluarachchi WD,et al. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy[J]. Nanomedicine, 2012, 8(7):1096-1105. doi: 10.1016/j.nano.2012.02.001.
46
SPIERS FW. The influence of energy absorption and electron range on dosage in irradiated bone[J]. Br J Radiol, 1949,22(261):521-533.doi: 10.1259/0007-1285-22-261-521.
47
Herold DM, Das IJ, Stobbe CC, et al. Gold microspheres:a selective technique for producing biologically effective dose enhancement[J]. Int J Radiat Biol, 2000,76(10):1357-1364. doi: 10.1080/09553000050151637.
48
Castillo MH, Button TM, Doerr R, et al. Effects of radiotherapy on mandibular reconstruction plates[J]. Am J Surg, 1988,156(4):261-263. doi: 10.1016/S0002-9610(88)80287-3.
49
Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: apreliminary Monte Carlo study[J]. Phys Med Biol, 2005,50(15):N163-173. doi: 10.1088/0031-9155/50/15/N01.
50
Geng F, Song K, Xing JZ, et al. Thio-glucose bound gold nanoparticlesenhance radio-cytotoxic targeting of ovarian cancer[J]. Nanotechnology, 2011,22(28):285101. doi: 10.1088/0957-4484/22/28/285101.
51
Hainfeld JF, Dilmanian FA, Zhong Z, et al. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma[J]. Phys Med Biol, 2010,55(11): 3045-3059. doi: 10.1088/0031-9155/55/11/004.
52
Chattopadhyay N, Cai Z, Kwon YL, et al. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation[J]. Breast Cancer Res Treat, 2013,137(1):81-91. doi: 10.1007/s10549-012-2338-4.
53
Chang MY, Shiau AL, Chen YH, et al. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice[J]. Cancer Sci, 2008,99(7):1479-1484. doi: 10.1111/j.1349-7006.2008.00827.x.
54
Hainfeld JF, Smilowitz HM, O’Connor MJ, et al. Gold nanoparticle imaging and radiotherapy of brain tumors in mice[J]. Nanomedicine (Lond), 2013,8(10): 1601-1609. doi: 10.2217/nnm.12.165.
55
McMahon SJ, Prise KM, Currell FJ. Comment on 'implications on clinical scenario of gold nanoparticle radiosensitization in regard to photon energy, nanoparticle size, concentration and location’[J]. Phys Med Biol, 2012, 57(1):287-290. doi: 10.1088/0031-9155/57/1/287.
56
Jean-Philippe P, Eli L. Reply to comment on 'implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location’[J]. Phys Med Biol, 2012, 57(1):291-295. doi: 10.1088/0031-9155/57/1/291.
57
Mu CJ, La Van DA, Langer RS, et al. Self-assembled goldnanoparticle molecular probes for detecting proteolytic activity in vivo[J]. ACS Nano, 2010,4(3):1511-1520. doi: 10.1021/nn9017334.
58
Lu W, Huang Q, Ku G, et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres[J]. Biomaterials, 2010, 31(9):2617-2626. doi: 10.1016/j.biomaterials.2009.12.007.
59
Lu W, Melancon MP, Xiong C, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma[J]. Cancer Res, 2011, 71(19):6116-6121. doi: 10.1158/0008-5472.CAN-10-4557.
60
Huang P, Rong P, Jin A,et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy[J]. Adv Mater, 2014, 26(37):6401-6408. doi: 10.1002/adma.201400914.
61
Gao F, Bai L, Liu S,et al. Rationally encapsulated gold nanorods improving both linear and nonlinear photoacoustic imaging contrast in vivo[J].Nanoscale, 2017, 9(1):79-86. doi: 10.1039/c6nr07528b.
62
Bassi B, Taglietti A, Galinetto P,et al. Tunable coating of gold nanostars: tailoring robust SERS labels for cell imaging[J]. Nanotechnology, 2016, 27(26):265302. doi: 10.1088/0957-4484/27/26/265302.
63
McVeigh PZ, Mallia RJ, Veilleux I, et al. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo[J]. J Biomed Opt, 2013, 18(4):046011. doi: 10.1117/1.JBO.18.4.046011.
64
Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles: a new X-ray contra stagent[J]. Br J Radiol, 2006, 79(939):248-253. doi: 10.1259/bjr/13169882.
65
Kattumuri V, Katti K, Bhaskaran S, et al. Gum Arabic as a phytoehemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray contrast-imaging studies[J]. Small, 2007,3(2):333-341. doi: 10.1002/smll.200600427.
66
Park J, Reddy PAN, Kim HK, et al. Gold nanoparticles functionalised by Gd-complex of DTPA-bis (amide) conjugate of glutathione as an MRI contrast agent[J]. Bioorg Med Chem Lett, 2008,18(23):6135-6137. doi: 10.1016/j.bmcl.2008.10.017.
67
Ahmad T, Bae H, Rhee I, et al. Gold-coated iron oxide nanoparticles as a T2 contrastagent in magnetic resonance imaging[J]. J Nanosci Nanotechnol, 2012 , 12(7):5132-5137. doi: 10.1166/jnn.2012.6368.
68
Murph SE, Jacobs S, Liu J, et al. Manganese-gold nanoparticles as an MRI positive contrast agent in mesenchymal stem cell labeling[J]. J Nanopart Res, 2012, 14:658. doi: 10.1007/s11051-011-0658-7.
69
Chen Q, Li K, Wen S, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles[J]. Biomaterials, 2013, 34(21):5200-5209. doi: 10.1016/j.biomaterials.2013.03.009.
70
Frellsen AF, Hansen AE, Jølck RI, et al. Mouse positron emission tomography study of the biodistribution of gold nanoparticles with different surface coatings using embedded copper-64[J]. ACS Nano, 2016, 10(11):9887-9898. doi: 10.1021/acsnano.6b03144.
71
Jang B, Park S, Kang SH, et al. Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo[J]. Quant Imaging Med Surg, 2012, 2(1):1-11. doi: 10.3978/.issn.2223-4292.2012.01.03.
72
Biju V, Hamada M, Ono K, et al. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging[J]. Nanoscale, 2015 , 7(36):14829-14837. doi: 10.1039/c5nr00959f.
73
Kircher MF, de la Zerda A, Jokerst JV, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle[J]. Nat Med, 2012, 18(5):829-834. doi: 10.1038/nm.2721.
74
Yang M, Cheng K, Qi S, et al. Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging[J]. Biomaterials, 2013, 34(11):2796-2806. doi: 10.1016/j.biomaterials.2013.01.014.
75
Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005, 1(3):325-327. doi: 10.1002/smll.200400093.
76
Johnston HJ, Hutchison G, Christensen FM, et al. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity[J]. Crit Rev Toxicol, 2010, 40(4): 328-346. doi: 10.3109/10408440903453074.
77
Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removalof protein-coated gold nanoparticles of different sizes and shapes[J]. Nano Lett, 2007,7(6):1542-1550. doi: 10.1021/nl070363y.
[1] 吴疆, 刘嘉琦, 邢泽宇, 张梦璐, 冯轲昕, 贾梓淇, 李佳欣, 王杰, 王昕, 王翔. 乳腺癌合并多原发恶性肿瘤一例并文献复习[J]. 中华乳腺病杂志(电子版), 2023, 17(01): 55-59.
[2] 陈永胜, 朱健, 王军, 张永辉, 徐源佑, 丁璐璐, 陈建国, 樊健, 姚海蓉. 江苏省启东市育龄女性恶性肿瘤患者生存率变化趋势分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 363-372.
[3] 边策. 妇科恶性肿瘤术后淋巴囊肿的防治[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 373-.
[4] 瞿虎. 上尿路恶性肿瘤整体治疗方案[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(06): 0-.
[5] 赵延军, 张红军, 贾丽娟, 顾兴, 李文洁, 柴雅琴, 冯斐, 张海涛. 疑难肺部阴影临床与病理分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 26-30.
[6] 杨美, 简亿, 方莉, 余枝娟, 张建勇. 肺鳞癌合并鼻部弥漫大B细胞淋巴瘤一例[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 926-928.
[7] 苏可, 曹亚娟, 彭进, 张来柱, 余德才. 转化治疗后腔镜根治性肝切除手术治疗晚期胆道肿瘤(Laennec入路)[J]. 中华腔镜外科杂志(电子版), 2023, 16(01): 49-51.
[8] 李昶田, 唐文博, 柳俨哲, 尹注增, 高元兴, 赵之明, 安力春. 术中超声在机器人辅助胰腺良性-低度恶性肿瘤手术中的应用价值[J]. 中华腔镜外科杂志(电子版), 2022, 15(02): 94-99.
[9] 赵祺, 吕培华, 吴红林, 李勇, 汤明珠, 屈豪, 徐阳, 袁露, 郭永恒, 周洲, 高爽. 上消化道早癌筛查的研究进展[J]. 中华消化病与影像杂志(电子版), 2022, 12(03): 167-170.
[10] 王家圆, 王晓东. 消化系统恶性肿瘤相关肌少症的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 823-827.
[11] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[12] 王亚飞, 吴振彪. 自身抗体在皮肌炎患者管理中的应用[J]. 中华临床医师杂志(电子版), 2022, 16(08): 796-800.
[13] 焦盼, 覃佳, 陈旭颖, 李超, 张晓磷. 原发性肝癌合并肝动脉-门静脉分流的介入治疗进展[J]. 中华介入放射学电子杂志, 2022, 10(02): 209-214.
[14] 蔡朝蓓, 李惠凯, 高飞, 韩珂, 令狐恩强. 消化道恶性肿瘤活动性出血不同内镜下止血方法的对比研究[J]. 中华胃肠内镜电子杂志, 2023, 10(03): 152-158.
[15] 袁畅, 李志刚. 胸部恶性肿瘤相关气管食管瘘的诊治进展[J]. 中华胸部外科电子杂志, 2023, 10(04): 241-246.
阅读次数
全文


摘要