切换至 "中华医学电子期刊资源库"

中华介入放射学电子杂志 ›› 2021, Vol. 09 ›› Issue (04) : 351 -359. doi: 10.3877/cma.j.issn.2095-5782.2021.04.001

所属专题: 指南共识

指南与共识

近红外荧光成像在食管癌淋巴结清扫术中的应用专家共识(2021版)
中国医院协会介入医学中心分会   
  • 收稿日期:2021-11-01 出版日期:2021-11-25
  • 基金资助:
    国家重点研发计划(2018YFC0910600)

Expert consensus on the application of near-infrared fluorescence imaging in lymph node dissection for esophageal cancer (Version 2021)

Interventional Medicine Center Association, CHA   

  • Received:2021-11-01 Published:2021-11-25
引用本文:

中国医院协会介入医学中心分会. 近红外荧光成像在食管癌淋巴结清扫术中的应用专家共识(2021版)[J]. 中华介入放射学电子杂志, 2021, 09(04): 351-359.

Interventional Medicine Center Association, CHA. Expert consensus on the application of near-infrared fluorescence imaging in lymph node dissection for esophageal cancer (Version 2021)[J]. Chinese Journal of Interventional Radiology(Electronic Edition), 2021, 09(04): 351-359.

图1 近红外荧光手术导航设备示意图和成像原理示意
图2 胃镜监视下用内镜注射针在食管癌上下缘的黏膜下环周4点注射ICG
图3 3种视野下近红外荧光成像,实现区域内重要淋巴组织结构的可视化3A:左喉返神经旁淋巴结术中显像;3B:胸上段食管癌瘤体术中显像;3C:胸导管荧光显影;3D:贲门及胃小弯淋巴结。
图4 ICG近红外荧光成像明确显示各站点淋巴结位置,引导定位切除及体外淋巴结分拣4A:胃左动脉旁淋巴结;4B:贲门右淋巴结;4C:右喉返神经旁淋巴结;4D:中段食管旁淋巴结;4E:隆突下淋巴结;4F:离体淋巴结荧光成像。
[1]
Lagergren J, Smyth E, Cunningham D, et al. Oesophageal cancer[J]. Lancet, 2017, 390(10110): 2383-2396.
[2]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[3]
Pennathur A, Gibson MK, Jobe BA, et al. Oesophageal carcinoma[J]. Lancet, 2013, 381(9864): 400-412.
[4]
Miyata H, Yamasaki M, Kurokawa Y, et al. Survival factors in patients with recurrence after curative resection of esophageal squamous cell carcinomas[J]. Ann Surg Oncol, 2011, 18(12): 3353-3361.
[5]
Mariette C, Taillier G, Van Seuningen I, et al. Factors affecting postoperative course and survival after en- bloc resection for esophageal carcinoma[J]. Ann Thorac Surg, 2004, 78(4): 1177-1183.
[6]
Kato H, Fukuchi M, Miyazaki T, et al. Surgical treatment for esophageal cancer. current issues[J]. Dig Surg, 2007, 24(2): 88-95.
[7]
Pech O, Behrens A, May A, et al. Long-term results and risk factor analysis for recurrence after curative endoscopic therapy in 349 patients with high-grade intraepithelial neoplasia and mucosal adenocarcinoma in barrett's oesophagus[J]. Gut, 2008, 57(9): 1200-1206.
[8]
Akutsu Y, Kato K, Igaki H, et al. The prevalence of overall and initial lymph node metastases in clinical T1N0 thoracic esophageal cancer: from the results of JCOG0502, a prospective multicenter study[J]. Ann Surg, 2016, 264(6): 1009-1015.
[9]
Miao Y, Gu C, Zhu Y, et al. Recent progress in fluorescence imaging of the near-infrared II window[J]. Chembiochem, 2018, 19(24): 2522-2541.
[10]
Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: state of the art and future directions[J]. World J Gastroenterol, 2018, 24(27): 2921-2930.
[11]
Gilmore DM, Khullar OV, Gioux S, et al. Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma[J]. Ann Surg Oncol, 2013, 20(7): 2357-2363.
[12]
Mieog JS, Troyan SL, Hutteman M, et al. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer[J]. Ann Surg Oncol, 2011, 18(9): 2483-2491.
[13]
Gilmore DM, Khullar OV, Jaklitsch MT, et al. Identification of metastatic nodal disease in a phase 1 dose-escalation trial of intraoperative sentinel lymph node mapping in non-small cell lung cancer using near-infrared imaging[J]. J Thorac Cardiovasc Surg, 2013, 146(3): 562-570, 569-570.
[14]
Soares AS, Lovat LB, Chand M. Intracorporeal lymph node mapping in colon cancer surgery[J]. Eur J Surg Oncol, 2019, 45(12): 2316-2318.
[15]
Hachey KJ, Gilmore DM, Armstrong KW, et al. Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer[J]. J Thorac Cardiovasc Surg, 2016, 152(2): 546-554.
[16]
Schlottmann F, Barbetta A, Mungo B, et al. Identification of the lymphatic drainage pattern of esophageal cancer with near-infrared fluorescent imaging[J]. J Laparoendosc Adv Surg Tech A, 2017, 27(3): 268-271.
[17]
Park SY, Suh JW, Kim DJ, et al. Near-infrared lymphatic mapping of the recurrent laryngeal nerve nodes in T1 esophageal cancer[J]. Ann Thorac Surg, 2018, 105(6): 1613-1620.
[18]
Wang X, Hu Y, Wu X, et al. Near-infrared fluorescence imaging-guided lymphatic mapping in thoracic esophageal cancer surgery[J]. Surg Endosc, 2021.

URL    
[19]
Jiang H, Teng H, Sun Y, et al. Near-infrared fluorescent image-guided lymphatic mapping in esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2020, 27(10): 3799-3807.
[20]
Verbeek FP, van der Vorst JR, Schaafsma BE, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience[J].J Urol, 2013, 190(2): 574-579.
[21]
van der Vorst JR, Vahrmeijer AL, Hutteman M, et al. Near-infrared fluorescence imaging of a solitary fibrous tumor of the pancreas using methylene blue[J]. World J Gastrointest Surg, 2012, 4(7): 180-184.
[22]
Vahrmeijer AL, Hutteman M, van der Vorst JR, et al. Image-guided cancer surgery using near-infrared fluorescence[J]. Nat Rev Clin Oncol, 2013, 10(9): 507-518.
[23]
中国临床肿瘤学会指南工作委员会. 食管癌诊疗指南(2020版)[M]. 北京: 人民卫生出版社,2020:41-50
[24]
Landsman ML, Kwant G, Mook GA, et al. Light-absorbing properties, stability, and spectral stabilization of indocyanine green[J]. J Appl Physiol, 1976, 40(4): 575-583.
[25]
Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery[J]. Int J Biomed Imaging, 2012, 2012: 940585.
[26]
Kaplan-Marans E, Fulla J, Tomer N, et al. Indocyanine green (ICG) in urologic surgery[J]. Urology, 2019, 132: 10-17.
[27]
Li S, Jiang L, Ang K L, et al. New tubeless video-assisted thoracoscopic surgery for small pulmonary nodules[J]. Eur J Cardiothorac Surg, 2017, 51(4): 689-693.
[28]
Esposito C, Settimi A, Del CF, et al. Image-guided pediatric surgery using indocyanine green (ICG) fluorescence in laparoscopic and robotic surgery[J]. Front Pediatr, 2020, 8: 314.
[29]
van Manen L, Handgraaf H, Diana M, et al. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery[J]. J Surg Oncol, 2018, 118(2): 283-300.
[30]
Wang Z, Ni K, Zhang X, et al. Method for real-time tissue quantification of indocyanine green revealing optimal conditions for near infrared fluorescence guided surgery[J]. Anal Chem, 2018, 90(13): 7922-7929.
[31]
Nagaya T, Nakamura YA, Choyke PL, et al. Fluorescence-guided surgery[J]. Front Oncol, 2017, 7: 314.
[32]
Greenstein AJ, Litle VR, Swanson SJ, et al. Effect of the number of lymph nodes sampled on postoperative survival of lymph node-negative esophageal cancer[J]. Cancer, 2008, 112(6): 1239-1246.
[33]
Peyre CG, Hagen JA, DeMeester SR, et al. The number of lymph nodes removed predicts survival in esophageal cancer: an international study on the impact of extent of surgical resection[J]. Ann Surg, 2008, 248(4): 549-556.
[34]
Obana A, Miki T, Hayashi K, et al. Survey of complications of indocyanine green angiography in Japan[J]. Am J Ophthalmol, 1994, 118(6): 749-753.
[35]
Hope-Ross M, Yannuzzi LA, Gragoudas ES, et al. Adverse reactions due to indocyanine green[J]. Ophthalmology, 1994, 101(3): 529-533.
[36]
吴孟超,吴在德. 黄家驷外科学(第7版)(精)[M]. 北京: 人民卫生出版社, 2011: 503-504.
[37]
Kwon I G, Son T, Kim H I, et al. Fluorescent lymphography-guided lymphadenectomy during robotic radical gastrectomy for gastric cancer[J]. JAMA Surg, 2019, 154(2): 150-158.
[38]
Mboumi IW, Reddy S, Lidor AO. Complications after esophagectomy[J]. Surg Clin North Am, 2019, 99(3): 501-510.
[39]
Ohi M, Toiyama Y, Mohri Y, et al. Prevalence of anastomotic leak and the impact of indocyanine green fluorescein imaging for evaluating blood flow in the gastric conduit following esophageal cancer surgery[J]. Esophagus, 2017, 14(4): 351-359.
[40]
Ladak F, Dang JT, Switzer N, et al. Indocyanine green for the prevention of anastomotic leaks following esophagectomy:a meta-analysis[J]. Surg Endosc, 2019, 33(2): 384-394.
[41]
Sato Y, Kosugi S, Aizawa N, et al. Risk factors and clinical outcomes of recurrent laryngeal nerve paralysis after esophagectomy for thoracic esophageal carcinoma[J]. World J Surg, 2016, 40(1): 129-136.
[42]
Nagengast WB, Hartmans E, Garcia-Allende PB, et al. Near-infrared fluorescence molecular endoscopy detects dysplastic oesophageal lesions using topical and systemic tracer of vascular endothelial growth factor A[J]. Gut, 2019, 68(1): 7-10.
[43]
Sturm MB, Joshi BP, Lu S, et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results[J]. Sci Transl Med, 2013, 5(184): 161r-184r.
[44]
Liang M, Yang M, Wang F, et al. Near-infrared fluorescence-guided resection of micrometastases derived from esophageal squamous cell carcinoma using a c-Met-targeted probe in a preclinical xenograft model[J]. J Control Release, 2021, 332: 171-183.
[45]
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows[J]. Nat Biomed Eng, 2020, 4(3): 259-271.
No related articles found!
阅读次数
全文


摘要